纳米载体
放射性核素治疗
Pet成像
放射化学
核医学
医学物理学
化学
医学
材料科学
纳米技术
正电子发射断层摄影术
药物输送
作者
Zhiqiang Li,Baikui Wang,Zheng Zhang,Bo Wang,Qiangqiang Xu,Wenjie Mao,Jie Tian,Kai Yang,Fu Wang
标识
DOI:10.1016/j.ymthe.2018.02.019
摘要
Development of biocompatible nanomaterials with multiple functionalities for combination of radiotherapy and chemotherapy has attracted tremendous attention in cancer treatment. Herein, poly(ethylene glycol) (PEG) modified polydopamine (PDA) nanoparticles were successfully developed as a favorable biocompatible nanoplatform for co-loading antitumor drugs and radionuclides to achieve imaging-guided combined radio-chemotherapy. It is demonstrated that PEGylated PDA nanoparticles can effectively load two different drugs including sanguinarine (SAN) and metformin (MET), as well as radionuclides 131I in one system. The loaded SAN and MET could inhibit tumor growth via inducing cell apoptosis and relieving tumor hypoxia, while labeling PDA-PEG with 131I enables in vivo radionuclide imaging and radioisotope therapy. As revealed by the therapeutic efficacy both in cell and animal levels, the multifunctional PDA nanoparticles (131I-PDA-PEG-SAN-MET) can effectively repress the growth of cancer cells in a synergistic manner without significant toxic side effects, exhibiting superior treatment outcome than the respective monotherapy. Therefore, this study provides a promising polymer-based platform to realize imaging-guided radioisotope/chemotherapy combination cancer treatment in future clinical application.
科研通智能强力驱动
Strongly Powered by AbleSci AI