轨道能级差
光电流
有机太阳能电池
带隙
材料科学
开路电压
光伏
富勒烯
光电子学
接受者
聚合物太阳能电池
能量转换效率
电压
化学
光伏系统
有机化学
分子
物理
电气工程
聚合物
凝聚态物理
复合材料
工程类
量子力学
作者
Bo He,Bin Yang,Matthew A. Kolaczkowski,Christopher L. Anderson,Liana M. Klivansky,Teresa L. Chen,Michael A. Brady,Yi Liu
出处
期刊:ACS energy letters
[American Chemical Society]
日期:2018-03-27
卷期号:3 (4): 1028-1035
被引量:49
标识
DOI:10.1021/acsenergylett.8b00366
摘要
Recent efforts in organic photovoltaics (OPVs) have been devoted to obtaining low-bandgap non-fullerene acceptors (NFAs) for high photocurrent generation. However, the low-lying lowest unoccupied molecular orbital (LUMO) level in narrow bandgap NFAs typically results in a small energy difference (ΔEDA) between the LUMO of the acceptor and the highest occupied molecular orbital (HOMO) of the donor, leading to low open-circuit voltage (VOC). The trade-off between ΔEDA and photocurrent generation significantly limits the simultaneous enhancement of both VOC and short-circuit current density (JSC). Here, we report a new medium-bandgap NFA, IDTT-T, containing a weakly electron-withdrawing N-ethyl thiabarbituric acid terminal group on each end of the indacenodithienothiophene (IDTT) core. When paired with a benchmark low-bandgap PTB7-th polymer donor, simultaneous enhancement of both ΔEDA and absorption spectral coverage was realized. The OPV devices yield a VOC of 1.01 V, corresponding to a low energy loss of 0.57 eV in around 10% efficiency single-junction NFA OPVs. The design demonstrates a working principle to concurrently increase ΔEDA and photocurrent generation for high VOC and PCE in bulk fullerene-free heterojunction OPVs.
科研通智能强力驱动
Strongly Powered by AbleSci AI