Ni–S–Fe alloy has been successfully fabricated on a copper foil substrate through direct-current electrodeposition as an electrocatalyst for hydrogen evolution reaction (HER) in alkaline solution. The Ni–S–Fe alloy is characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The electrocatalytic performance of Ni–S–Fe alloy for HER is studied in 30 wt% KOH solution. The results show that the Ni–S–Fe alloy exhibits much higher catalytic activity for HER relative to Ni–S alloy, as manifested by smaller overpotential of 222 mV at 10 mA cm−2 and higher exchange current density of 1.60 × 10−2 mA cm−2. The Tafel slope of 84.5 mV·dec−1 implies an underlying Volmer-Heyrovsky mechanism. The outstanding catalytic performance of the Ni–S–Fe alloy may originate from the synergistic effects of Ni and Fe, refined grain, and enlarged surface area of Ni–S–Fe alloy upon Fe doping. In addition, the Ni–S–Fe alloy has better anti-corrosion property than Ni–S alloy as a result of the poorer crystallinity of Ni–S–Fe alloy.