LightGBM: A Highly Efficient Gradient Boosting Decision Tree

Boosting(机器学习) 计算机科学 决策树 梯度升压 交替决策树 人工智能 增量决策树 机器学习 决策树学习 随机森林
作者
Guolin Ke,Qi Meng,Thomas Finley,Taifeng Wang,Wei Chen,Weidong Ma,Qiwei Ye,Tie‐Yan Liu
出处
期刊:Neural Information Processing Systems 被引量:6319
摘要

Gradient Boosting Decision Tree (GBDT) is a popular machine learning algorithm, and has quite a few effective implementations such as XGBoost and pGBRT. Although many engineering optimizations have been adopted in these implementations, the efficiency and scalability are still unsatisfactory when the feature dimension is high and data size is large. A major reason is that for each feature, they need to scan all the data instances to estimate the information gain of all possible split points, which is very time consuming. To tackle this problem, we propose two novel techniques: Gradient-based One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB). With GOSS, we exclude a significant proportion of data instances with small gradients, and only use the rest to estimate the information gain. We prove that, since the data instances with larger gradients play a more important role in the computation of information gain, GOSS can obtain quite accurate estimation of the information gain with a much smaller data size. With EFB, we bundle mutually exclusive features (i.e., they rarely take nonzero values simultaneously), to reduce the number of features. We prove that finding the optimal bundling of exclusive features is NP-hard, but a greedy algorithm can achieve quite good approximation ratio (and thus can effectively reduce the number of features without hurting the accuracy of split point determination by much). We call our new GBDT implementation with GOSS and EFB LightGBM. Our experiments on multiple public datasets show that, LightGBM speeds up the training process of conventional GBDT by up to over 20 times while achieving almost the same accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鹿茸与共发布了新的文献求助10
1秒前
2秒前
3秒前
科研达人发布了新的文献求助30
5秒前
博弈春秋发布了新的文献求助10
5秒前
Li发布了新的文献求助10
7秒前
刻苦绮露完成签到,获得积分10
7秒前
MIA发布了新的文献求助10
8秒前
8秒前
8秒前
boogie完成签到,获得积分10
10秒前
10秒前
华仔应助djbj2022采纳,获得10
12秒前
12秒前
赘婿应助欧阳铭采纳,获得10
13秒前
PZL发布了新的文献求助10
13秒前
13秒前
lanlan完成签到 ,获得积分10
13秒前
14秒前
Ing完成签到,获得积分10
16秒前
搜集达人应助玻丽露露采纳,获得10
16秒前
18秒前
18秒前
香蕉觅云应助tttt采纳,获得30
18秒前
18秒前
20秒前
文献小助手完成签到,获得积分10
21秒前
21秒前
Friday发布了新的文献求助10
23秒前
du完成签到 ,获得积分0
23秒前
一玮完成签到 ,获得积分10
26秒前
26秒前
127关注了科研通微信公众号
27秒前
6666发布了新的文献求助10
27秒前
瘦瘦的依玉完成签到 ,获得积分10
28秒前
科研通AI5应助要减肥天问采纳,获得10
28秒前
万能图书馆应助Friday采纳,获得10
29秒前
Li完成签到,获得积分20
30秒前
30秒前
麦子发布了新的文献求助10
31秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998752
求助须知:如何正确求助?哪些是违规求助? 3538216
关于积分的说明 11273702
捐赠科研通 3277200
什么是DOI,文献DOI怎么找? 1807436
邀请新用户注册赠送积分活动 883893
科研通“疑难数据库(出版商)”最低求助积分说明 810075