LightGBM: A Highly Efficient Gradient Boosting Decision Tree

Boosting(机器学习) 计算机科学 决策树 梯度升压 交替决策树 人工智能 增量决策树 机器学习 决策树学习 随机森林
作者
Guolin Ke,Qi Meng,Thomas Finley,Taifeng Wang,Wei Chen,Weidong Ma,Qiwei Ye,Tie‐Yan Liu
出处
期刊:Le Centre pour la Communication Scientifique Directe - HAL - Diderot 被引量:9476
摘要

Gradient Boosting Decision Tree (GBDT) is a popular machine learning algorithm, and has quite a few effective implementations such as XGBoost and pGBRT. Although many engineering optimizations have been adopted in these implementations, the efficiency and scalability are still unsatisfactory when the feature dimension is high and data size is large. A major reason is that for each feature, they need to scan all the data instances to estimate the information gain of all possible split points, which is very time consuming. To tackle this problem, we propose two novel techniques: Gradient-based One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB). With GOSS, we exclude a significant proportion of data instances with small gradients, and only use the rest to estimate the information gain. We prove that, since the data instances with larger gradients play a more important role in the computation of information gain, GOSS can obtain quite accurate estimation of the information gain with a much smaller data size. With EFB, we bundle mutually exclusive features (i.e., they rarely take nonzero values simultaneously), to reduce the number of features. We prove that finding the optimal bundling of exclusive features is NP-hard, but a greedy algorithm can achieve quite good approximation ratio (and thus can effectively reduce the number of features without hurting the accuracy of split point determination by much). We call our new GBDT implementation with GOSS and EFB LightGBM. Our experiments on multiple public datasets show that, LightGBM speeds up the training process of conventional GBDT by up to over 20 times while achieving almost the same accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李媛媛完成签到,获得积分10
刚刚
我不到啊完成签到 ,获得积分10
刚刚
samurai完成签到,获得积分10
刚刚
zzzzzdz完成签到,获得积分10
刚刚
缄默完成签到,获得积分10
1秒前
漠之梦完成签到,获得积分10
1秒前
积极的千琴完成签到,获得积分10
1秒前
动听煎饼完成签到 ,获得积分10
1秒前
麦芽完成签到,获得积分10
2秒前
yanj520925完成签到,获得积分10
2秒前
sync发布了新的文献求助10
2秒前
蓝天发布了新的文献求助10
2秒前
LIUUU完成签到,获得积分10
3秒前
chromium22发布了新的文献求助10
3秒前
蓝桉完成签到 ,获得积分10
4秒前
淡定雅山发布了新的文献求助10
4秒前
dake完成签到,获得积分10
4秒前
yx完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
老迟到的友菱完成签到,获得积分10
5秒前
wydspn完成签到,获得积分10
5秒前
xiaofeifantasy完成签到,获得积分10
5秒前
闪闪新梅完成签到,获得积分10
6秒前
循环发布了新的文献求助10
6秒前
David发布了新的文献求助30
6秒前
livra1058完成签到,获得积分10
6秒前
欢呼问旋完成签到,获得积分10
7秒前
husiqi_547完成签到,获得积分10
7秒前
开心涛完成签到,获得积分10
9秒前
空山完成签到,获得积分10
9秒前
livra1058发布了新的文献求助10
10秒前
讨厌所有人完成签到,获得积分10
12秒前
谨慎青枫完成签到 ,获得积分10
12秒前
贪玩亦云完成签到,获得积分10
12秒前
大方的书雁完成签到,获得积分10
12秒前
13秒前
13秒前
进击的小胳膊完成签到,获得积分10
13秒前
13秒前
lx完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664885
求助须知:如何正确求助?哪些是违规求助? 4872325
关于积分的说明 15109450
捐赠科研通 4823740
什么是DOI,文献DOI怎么找? 2582524
邀请新用户注册赠送积分活动 1536489
关于科研通互助平台的介绍 1495074