LightGBM: A Highly Efficient Gradient Boosting Decision Tree

Boosting(机器学习) 计算机科学 决策树 梯度升压 交替决策树 人工智能 增量决策树 机器学习 决策树学习 随机森林
作者
Guolin Ke,Qi Meng,Thomas Finley,Taifeng Wang,Wei Chen,Weidong Ma,Qiwei Ye,Tie‐Yan Liu
出处
期刊:Neural Information Processing Systems 被引量:5958
摘要

Gradient Boosting Decision Tree (GBDT) is a popular machine learning algorithm, and has quite a few effective implementations such as XGBoost and pGBRT. Although many engineering optimizations have been adopted in these implementations, the efficiency and scalability are still unsatisfactory when the feature dimension is high and data size is large. A major reason is that for each feature, they need to scan all the data instances to estimate the information gain of all possible split points, which is very time consuming. To tackle this problem, we propose two novel techniques: Gradient-based One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB). With GOSS, we exclude a significant proportion of data instances with small gradients, and only use the rest to estimate the information gain. We prove that, since the data instances with larger gradients play a more important role in the computation of information gain, GOSS can obtain quite accurate estimation of the information gain with a much smaller data size. With EFB, we bundle mutually exclusive features (i.e., they rarely take nonzero values simultaneously), to reduce the number of features. We prove that finding the optimal bundling of exclusive features is NP-hard, but a greedy algorithm can achieve quite good approximation ratio (and thus can effectively reduce the number of features without hurting the accuracy of split point determination by much). We call our new GBDT implementation with GOSS and EFB LightGBM. Our experiments on multiple public datasets show that, LightGBM speeds up the training process of conventional GBDT by up to over 20 times while achieving almost the same accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ling完成签到,获得积分10
刚刚
TanFT完成签到,获得积分10
1秒前
笙歌自若发布了新的文献求助10
1秒前
1秒前
CipherSage应助积极的凌波采纳,获得10
2秒前
2秒前
烟花应助欣慰硬币采纳,获得10
2秒前
老大爷滴滴完成签到,获得积分10
2秒前
2秒前
2秒前
SciGPT应助LEMON采纳,获得10
3秒前
搜集达人应助叶飞荷采纳,获得10
3秒前
wxy完成签到,获得积分10
3秒前
4秒前
弄香完成签到,获得积分10
4秒前
gguc完成签到,获得积分10
4秒前
4秒前
无聊又夏完成签到,获得积分10
5秒前
今后应助木野狐采纳,获得10
5秒前
6秒前
小木木壮发布了新的文献求助10
6秒前
6秒前
6秒前
欢喜从霜发布了新的文献求助10
6秒前
7秒前
Ll发布了新的文献求助10
7秒前
茶艺如何发布了新的文献求助10
8秒前
落后秋柳发布了新的文献求助10
8秒前
科研通AI5应助大方嵩采纳,获得10
8秒前
9秒前
9秒前
海鸥海鸥发布了新的文献求助10
9秒前
南敏株完成签到,获得积分10
10秒前
稳重完成签到 ,获得积分10
11秒前
11秒前
11秒前
mi发布了新的文献求助10
11秒前
12秒前
顺利毕业完成签到 ,获得积分10
12秒前
GGZ发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762