重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

LightGBM: A Highly Efficient Gradient Boosting Decision Tree

Boosting(机器学习) 计算机科学 决策树 梯度升压 交替决策树 人工智能 增量决策树 机器学习 决策树学习 随机森林
作者
Guolin Ke,Qi Meng,Thomas Finley,Taifeng Wang,Wei Chen,Weidong Ma,Qiwei Ye,Tie‐Yan Liu
出处
期刊:Le Centre pour la Communication Scientifique Directe - HAL - Diderot 被引量:9477
摘要

Gradient Boosting Decision Tree (GBDT) is a popular machine learning algorithm, and has quite a few effective implementations such as XGBoost and pGBRT. Although many engineering optimizations have been adopted in these implementations, the efficiency and scalability are still unsatisfactory when the feature dimension is high and data size is large. A major reason is that for each feature, they need to scan all the data instances to estimate the information gain of all possible split points, which is very time consuming. To tackle this problem, we propose two novel techniques: Gradient-based One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB). With GOSS, we exclude a significant proportion of data instances with small gradients, and only use the rest to estimate the information gain. We prove that, since the data instances with larger gradients play a more important role in the computation of information gain, GOSS can obtain quite accurate estimation of the information gain with a much smaller data size. With EFB, we bundle mutually exclusive features (i.e., they rarely take nonzero values simultaneously), to reduce the number of features. We prove that finding the optimal bundling of exclusive features is NP-hard, but a greedy algorithm can achieve quite good approximation ratio (and thus can effectively reduce the number of features without hurting the accuracy of split point determination by much). We call our new GBDT implementation with GOSS and EFB LightGBM. Our experiments on multiple public datasets show that, LightGBM speeds up the training process of conventional GBDT by up to over 20 times while achieving almost the same accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苗条采蓝发布了新的文献求助10
刚刚
crane完成签到,获得积分10
刚刚
852应助MailkMonk采纳,获得10
刚刚
梁凯华完成签到,获得积分10
刚刚
1秒前
kiki发布了新的文献求助10
1秒前
112完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
2秒前
3秒前
1renebaebae完成签到,获得积分20
3秒前
SciGPT应助听风说采纳,获得10
4秒前
xlong发布了新的文献求助10
5秒前
丘比特应助老实的百招采纳,获得10
5秒前
科研通AI6应助doctorkys采纳,获得30
6秒前
Kuuga完成签到,获得积分10
6秒前
6秒前
杨小豆发布了新的文献求助10
6秒前
库凯伊完成签到,获得积分10
6秒前
金桔柠檬完成签到,获得积分10
6秒前
好运6连发布了新的文献求助10
7秒前
烟花应助月亮0927采纳,获得10
7秒前
7秒前
orixero应助梅江采纳,获得10
7秒前
ZZzz发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
lilei发布了新的文献求助10
8秒前
8秒前
典雅问寒完成签到,获得积分0
8秒前
薄荷完成签到,获得积分10
8秒前
8秒前
9秒前
鲜艳的帅哥完成签到,获得积分10
9秒前
10秒前
Owen应助flj采纳,获得10
10秒前
赵楠完成签到,获得积分20
11秒前
11秒前
时尚立轩完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466189
求助须知:如何正确求助?哪些是违规求助? 4570151
关于积分的说明 14323225
捐赠科研通 4496641
什么是DOI,文献DOI怎么找? 2463456
邀请新用户注册赠送积分活动 1452353
关于科研通互助平台的介绍 1427516