LightGBM: A Highly Efficient Gradient Boosting Decision Tree

Boosting(机器学习) 计算机科学 决策树 梯度升压 交替决策树 人工智能 增量决策树 机器学习 决策树学习 随机森林
作者
Guolin Ke,Qi Meng,Thomas Finley,Taifeng Wang,Wei Chen,Weidong Ma,Qiwei Ye,Tie‐Yan Liu
出处
期刊:Neural Information Processing Systems 被引量:6844
摘要

Gradient Boosting Decision Tree (GBDT) is a popular machine learning algorithm, and has quite a few effective implementations such as XGBoost and pGBRT. Although many engineering optimizations have been adopted in these implementations, the efficiency and scalability are still unsatisfactory when the feature dimension is high and data size is large. A major reason is that for each feature, they need to scan all the data instances to estimate the information gain of all possible split points, which is very time consuming. To tackle this problem, we propose two novel techniques: Gradient-based One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB). With GOSS, we exclude a significant proportion of data instances with small gradients, and only use the rest to estimate the information gain. We prove that, since the data instances with larger gradients play a more important role in the computation of information gain, GOSS can obtain quite accurate estimation of the information gain with a much smaller data size. With EFB, we bundle mutually exclusive features (i.e., they rarely take nonzero values simultaneously), to reduce the number of features. We prove that finding the optimal bundling of exclusive features is NP-hard, but a greedy algorithm can achieve quite good approximation ratio (and thus can effectively reduce the number of features without hurting the accuracy of split point determination by much). We call our new GBDT implementation with GOSS and EFB LightGBM. Our experiments on multiple public datasets show that, LightGBM speeds up the training process of conventional GBDT by up to over 20 times while achieving almost the same accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助科研通管家采纳,获得10
刚刚
淡定秀发完成签到,获得积分10
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
上官若男应助科研通管家采纳,获得10
刚刚
糖糖发布了新的文献求助10
刚刚
Hello应助科研通管家采纳,获得10
刚刚
香蕉觅云应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
hh完成签到,获得积分10
刚刚
平旺完成签到,获得积分10
1秒前
2秒前
黄梦娇完成签到,获得积分10
2秒前
严俊东发布了新的文献求助10
2秒前
生命科学的第一推动力完成签到 ,获得积分10
2秒前
3秒前
李沐唅发布了新的文献求助10
4秒前
4秒前
香蕉觅云应助芝士采纳,获得10
5秒前
小青龙完成签到,获得积分10
5秒前
小A同学发布了新的文献求助10
5秒前
刘鑫发布了新的文献求助10
6秒前
科研通AI5应助鲜艳的三毒采纳,获得10
6秒前
酷炫抽屉完成签到 ,获得积分10
6秒前
7秒前
Wang发布了新的文献求助10
7秒前
洁净思天完成签到,获得积分10
8秒前
时尚的不斜完成签到 ,获得积分10
10秒前
Uzma完成签到,获得积分10
10秒前
JYCKLTY完成签到,获得积分10
10秒前
Ayo完成签到,获得积分10
11秒前
ANG完成签到 ,获得积分10
11秒前
香蕉觅云应助严俊东采纳,获得10
11秒前
小黑猴ps完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
称心妙竹应助sxmt123456789采纳,获得30
13秒前
14秒前
无奈曼云完成签到,获得积分10
14秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5213290
求助须知:如何正确求助?哪些是违规求助? 4389206
关于积分的说明 13666238
捐赠科研通 4250143
什么是DOI,文献DOI怎么找? 2331945
邀请新用户注册赠送积分活动 1329645
关于科研通互助平台的介绍 1283189