LightGBM: A Highly Efficient Gradient Boosting Decision Tree

Boosting(机器学习) 计算机科学 决策树 梯度升压 交替决策树 人工智能 增量决策树 机器学习 决策树学习 随机森林
作者
Guolin Ke,Qi Meng,Thomas Finley,Taifeng Wang,Wei Chen,Weidong Ma,Qiwei Ye,Tie‐Yan Liu
出处
期刊:Le Centre pour la Communication Scientifique Directe - HAL - Diderot 被引量:9477
摘要

Gradient Boosting Decision Tree (GBDT) is a popular machine learning algorithm, and has quite a few effective implementations such as XGBoost and pGBRT. Although many engineering optimizations have been adopted in these implementations, the efficiency and scalability are still unsatisfactory when the feature dimension is high and data size is large. A major reason is that for each feature, they need to scan all the data instances to estimate the information gain of all possible split points, which is very time consuming. To tackle this problem, we propose two novel techniques: Gradient-based One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB). With GOSS, we exclude a significant proportion of data instances with small gradients, and only use the rest to estimate the information gain. We prove that, since the data instances with larger gradients play a more important role in the computation of information gain, GOSS can obtain quite accurate estimation of the information gain with a much smaller data size. With EFB, we bundle mutually exclusive features (i.e., they rarely take nonzero values simultaneously), to reduce the number of features. We prove that finding the optimal bundling of exclusive features is NP-hard, but a greedy algorithm can achieve quite good approximation ratio (and thus can effectively reduce the number of features without hurting the accuracy of split point determination by much). We call our new GBDT implementation with GOSS and EFB LightGBM. Our experiments on multiple public datasets show that, LightGBM speeds up the training process of conventional GBDT by up to over 20 times while achieving almost the same accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
稳重的雨灵完成签到,获得积分10
1秒前
帅气鹰完成签到,获得积分10
1秒前
洁净的雪青完成签到,获得积分10
1秒前
zhangyida完成签到,获得积分10
1秒前
Akim应助鱼儿采纳,获得10
2秒前
黎小静完成签到,获得积分10
2秒前
随风发布了新的文献求助10
2秒前
孤独丹秋发布了新的文献求助10
2秒前
LiuKangwei完成签到,获得积分10
2秒前
xue发布了新的文献求助10
2秒前
胡俊完成签到,获得积分20
3秒前
共享精神应助杨朝进采纳,获得10
3秒前
3秒前
123发布了新的文献求助10
4秒前
大乐发布了新的文献求助10
4秒前
5秒前
桐桐应助调皮的皓轩采纳,获得10
5秒前
mimi完成签到,获得积分20
5秒前
赘婿应助细心的雪晴采纳,获得30
5秒前
魔幻若血发布了新的文献求助10
6秒前
好名字发布了新的文献求助10
6秒前
6秒前
隐形曼青应助柒七采纳,获得10
6秒前
7秒前
7秒前
文静的飞飞完成签到 ,获得积分10
7秒前
小马甲应助RR采纳,获得10
7秒前
8秒前
8秒前
科研通AI6应助末鸭梨采纳,获得10
8秒前
8秒前
美年达发布了新的文献求助10
10秒前
儒雅的十八完成签到,获得积分10
10秒前
hyphen完成签到,获得积分10
10秒前
necessaryman发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
随风完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546309
求助须知:如何正确求助?哪些是违规求助? 4632193
关于积分的说明 14625447
捐赠科研通 4573861
什么是DOI,文献DOI怎么找? 2507851
邀请新用户注册赠送积分活动 1484503
关于科研通互助平台的介绍 1455714