亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Assessment of translational risk in drug research: Role of biomarker classification and mechanism-based PKPD concepts

生物标志物 背景(考古学) 药品 药物开发 转化研究 机制(生物学) 医学 药物作用 临床试验 转化医学 相关性(法律) 生物信息学 风险分析(工程) 药理学 生物 病理 古生物学 生物化学 哲学 认识论 政治学 法学
作者
Sandra Visser,Tjerk Bueters
出处
期刊:European Journal of Pharmaceutical Sciences [Elsevier]
卷期号:109: S72-S77 被引量:7
标识
DOI:10.1016/j.ejps.2017.08.006
摘要

In 2005, Danhof and coauthors proposed a new biomarker classification in the context of the application of mechanism-based PKPD modeling. They defined the term 'biomarker' as a measure that characterizes a drug-induced response, which is on the causal path between drug administration and clinical outcome. The biomarker classification identified seven categories that provide different insights into the kinetics of drug action, such as target site distribution, target engagement, or into the impact of the drug on physiology or disease. The original biomarker classification has been further modified into a translational biomarker scheme that is used as a communication tool for drug hunting teams to guide designing translational and early clinical development plans as part of an integrated model-informed drug discovery and development strategy. It promotes a dedicated discussion on the topic of the translational relevance of biomarkers and enables efficient identification of translational gaps and opportunities. Based on the elucidated PKPD characteristics exhibited by a novel drug and the kinetics of the investigated biomarker, prospective predictions can be made for the drug response under new conditions; translating from the preclinical arena to the clinical setting, from the healthy volunteer to the patient, or from an adult to an elderly or a child. These drug response predictions provide support to decisions on appropriate next steps in the development of the drug, while keeping clear line of sight on the potential to address unmet medical need. Moreover, this framework enables a transparent translational risk assessment for drug hunting projects, and as such can underpin decisions at program and portfolio level.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
ding应助沉静的万天采纳,获得10
5秒前
5秒前
6秒前
zrrr完成签到 ,获得积分10
6秒前
6秒前
科研通AI6.1应助Crw__采纳,获得10
13秒前
simon完成签到 ,获得积分10
17秒前
流川封完成签到,获得积分10
18秒前
烂漫靖柏完成签到 ,获得积分10
22秒前
23秒前
雪霁完成签到,获得积分10
24秒前
Crw__发布了新的文献求助10
32秒前
汪酱酱完成签到 ,获得积分10
33秒前
星辰大海应助坚强的唇膏采纳,获得10
49秒前
量子星尘发布了新的文献求助10
50秒前
风信子完成签到 ,获得积分10
51秒前
啵啵鱼发布了新的文献求助10
52秒前
qunna完成签到,获得积分10
52秒前
1分钟前
1分钟前
努力的淼淼完成签到 ,获得积分10
1分钟前
范丞丞完成签到 ,获得积分10
1分钟前
三点前我必睡完成签到 ,获得积分10
1分钟前
Rui发布了新的文献求助10
1分钟前
1分钟前
Akim应助等待的香魔采纳,获得30
1分钟前
啵啵鱼完成签到,获得积分20
1分钟前
昵称完成签到,获得积分0
1分钟前
整齐晓筠完成签到 ,获得积分10
1分钟前
1分钟前
Lisheng000完成签到 ,获得积分10
1分钟前
OCDer发布了新的文献求助10
1分钟前
1分钟前
1分钟前
西蓝花战士完成签到 ,获得积分10
1分钟前
zhangyue7777完成签到,获得积分10
1分钟前
1分钟前
最爱吃火锅完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788109
求助须知:如何正确求助?哪些是违规求助? 5704481
关于积分的说明 15473229
捐赠科研通 4916268
什么是DOI,文献DOI怎么找? 2646252
邀请新用户注册赠送积分活动 1593896
关于科研通互助平台的介绍 1548301