Assessment of translational risk in drug research: Role of biomarker classification and mechanism-based PKPD concepts

生物标志物 背景(考古学) 药品 药物开发 转化研究 机制(生物学) 医学 药物作用 临床试验 转化医学 相关性(法律) 生物信息学 风险分析(工程) 药理学 生物 病理 古生物学 法学 哲学 政治学 认识论 生物化学
作者
Sandra Visser,Tjerk Bueters
出处
期刊:European Journal of Pharmaceutical Sciences [Elsevier BV]
卷期号:109: S72-S77 被引量:7
标识
DOI:10.1016/j.ejps.2017.08.006
摘要

In 2005, Danhof and coauthors proposed a new biomarker classification in the context of the application of mechanism-based PKPD modeling. They defined the term 'biomarker' as a measure that characterizes a drug-induced response, which is on the causal path between drug administration and clinical outcome. The biomarker classification identified seven categories that provide different insights into the kinetics of drug action, such as target site distribution, target engagement, or into the impact of the drug on physiology or disease. The original biomarker classification has been further modified into a translational biomarker scheme that is used as a communication tool for drug hunting teams to guide designing translational and early clinical development plans as part of an integrated model-informed drug discovery and development strategy. It promotes a dedicated discussion on the topic of the translational relevance of biomarkers and enables efficient identification of translational gaps and opportunities. Based on the elucidated PKPD characteristics exhibited by a novel drug and the kinetics of the investigated biomarker, prospective predictions can be made for the drug response under new conditions; translating from the preclinical arena to the clinical setting, from the healthy volunteer to the patient, or from an adult to an elderly or a child. These drug response predictions provide support to decisions on appropriate next steps in the development of the drug, while keeping clear line of sight on the potential to address unmet medical need. Moreover, this framework enables a transparent translational risk assessment for drug hunting projects, and as such can underpin decisions at program and portfolio level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
缥缈的凝海完成签到,获得积分10
1秒前
一期一会完成签到,获得积分10
1秒前
lll发布了新的文献求助10
1秒前
格子发布了新的文献求助10
1秒前
MoL完成签到,获得积分10
2秒前
战战欧巴发布了新的文献求助10
2秒前
JoJo发布了新的文献求助10
3秒前
无花果应助何姗悦采纳,获得10
4秒前
4秒前
jianmin发布了新的文献求助20
4秒前
5秒前
lbl发布了新的文献求助10
5秒前
欢喜发布了新的文献求助10
5秒前
AidenHelix完成签到,获得积分10
5秒前
西门灵薇完成签到,获得积分10
6秒前
无聊的爆米花完成签到,获得积分10
7秒前
kohu发布了新的文献求助10
8秒前
压力小子发布了新的文献求助50
8秒前
ZHU关闭了ZHU文献求助
8秒前
酷波er应助斯文的斩采纳,获得10
9秒前
happpy完成签到,获得积分10
9秒前
9秒前
橙子发布了新的文献求助10
9秒前
赢ok关注了科研通微信公众号
9秒前
流水应助子桑采纳,获得10
10秒前
李爱国应助可可西里采纳,获得10
10秒前
小二郎应助zzyyy采纳,获得10
10秒前
10秒前
11秒前
FashionBoy应助AidenHelix采纳,获得10
11秒前
11秒前
3189完成签到 ,获得积分10
12秒前
13秒前
科研通AI2S应助调皮的西装采纳,获得10
13秒前
TMY发布了新的文献求助10
14秒前
有魅力的白莲完成签到,获得积分20
14秒前
小帅完成签到,获得积分10
14秒前
yuzhou完成签到 ,获得积分10
14秒前
林洛沁发布了新的文献求助10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954873
求助须知:如何正确求助?哪些是违规求助? 3500946
关于积分的说明 11101499
捐赠科研通 3231364
什么是DOI,文献DOI怎么找? 1786402
邀请新用户注册赠送积分活动 870037
科研通“疑难数据库(出版商)”最低求助积分说明 801771