Assessment of translational risk in drug research: Role of biomarker classification and mechanism-based PKPD concepts

生物标志物 背景(考古学) 药品 药物开发 转化研究 机制(生物学) 医学 药物作用 临床试验 转化医学 相关性(法律) 生物信息学 风险分析(工程) 药理学 生物 病理 古生物学 生物化学 哲学 认识论 政治学 法学
作者
Sandra Visser,Tjerk Bueters
出处
期刊:European Journal of Pharmaceutical Sciences [Elsevier]
卷期号:109: S72-S77 被引量:7
标识
DOI:10.1016/j.ejps.2017.08.006
摘要

In 2005, Danhof and coauthors proposed a new biomarker classification in the context of the application of mechanism-based PKPD modeling. They defined the term 'biomarker' as a measure that characterizes a drug-induced response, which is on the causal path between drug administration and clinical outcome. The biomarker classification identified seven categories that provide different insights into the kinetics of drug action, such as target site distribution, target engagement, or into the impact of the drug on physiology or disease. The original biomarker classification has been further modified into a translational biomarker scheme that is used as a communication tool for drug hunting teams to guide designing translational and early clinical development plans as part of an integrated model-informed drug discovery and development strategy. It promotes a dedicated discussion on the topic of the translational relevance of biomarkers and enables efficient identification of translational gaps and opportunities. Based on the elucidated PKPD characteristics exhibited by a novel drug and the kinetics of the investigated biomarker, prospective predictions can be made for the drug response under new conditions; translating from the preclinical arena to the clinical setting, from the healthy volunteer to the patient, or from an adult to an elderly or a child. These drug response predictions provide support to decisions on appropriate next steps in the development of the drug, while keeping clear line of sight on the potential to address unmet medical need. Moreover, this framework enables a transparent translational risk assessment for drug hunting projects, and as such can underpin decisions at program and portfolio level.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南湖秋水发布了新的文献求助10
1秒前
大蒜味酸奶钊完成签到 ,获得积分10
2秒前
3秒前
4秒前
4秒前
幻化完成签到,获得积分10
5秒前
5秒前
6秒前
7秒前
Ray完成签到,获得积分10
7秒前
perfect完成签到 ,获得积分10
8秒前
zoeydonut发布了新的文献求助10
8秒前
dd完成签到,获得积分10
9秒前
Sunny完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
Glufo发布了新的文献求助10
10秒前
直率的惮完成签到 ,获得积分10
10秒前
kimoki发布了新的文献求助10
12秒前
12秒前
lyon完成签到,获得积分10
12秒前
14秒前
lpp_完成签到 ,获得积分10
14秒前
14秒前
Criminology34应助dd采纳,获得10
14秒前
14秒前
15秒前
Sweety-完成签到,获得积分10
15秒前
龙龙ff11_完成签到,获得积分10
16秒前
读二白完成签到,获得积分10
16秒前
ZZQ发布了新的文献求助10
16秒前
宴究生发布了新的文献求助10
17秒前
Amberless发布了新的文献求助10
18秒前
Litchi完成签到 ,获得积分10
18秒前
19秒前
彪壮的涵易完成签到,获得积分10
19秒前
19秒前
能干储发布了新的文献求助10
20秒前
20秒前
騰钚氦发布了新的文献求助30
20秒前
Sweety-发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641841
求助须知:如何正确求助?哪些是违规求助? 4757370
关于积分的说明 15014933
捐赠科研通 4800251
什么是DOI,文献DOI怎么找? 2565964
邀请新用户注册赠送积分活动 1524113
关于科研通互助平台的介绍 1483776