Assessment of translational risk in drug research: Role of biomarker classification and mechanism-based PKPD concepts

生物标志物 背景(考古学) 药品 药物开发 转化研究 机制(生物学) 医学 药物作用 临床试验 转化医学 相关性(法律) 生物信息学 风险分析(工程) 药理学 生物 病理 古生物学 生物化学 哲学 认识论 政治学 法学
作者
Sandra Visser,Tjerk Bueters
出处
期刊:European Journal of Pharmaceutical Sciences [Elsevier]
卷期号:109: S72-S77 被引量:7
标识
DOI:10.1016/j.ejps.2017.08.006
摘要

In 2005, Danhof and coauthors proposed a new biomarker classification in the context of the application of mechanism-based PKPD modeling. They defined the term 'biomarker' as a measure that characterizes a drug-induced response, which is on the causal path between drug administration and clinical outcome. The biomarker classification identified seven categories that provide different insights into the kinetics of drug action, such as target site distribution, target engagement, or into the impact of the drug on physiology or disease. The original biomarker classification has been further modified into a translational biomarker scheme that is used as a communication tool for drug hunting teams to guide designing translational and early clinical development plans as part of an integrated model-informed drug discovery and development strategy. It promotes a dedicated discussion on the topic of the translational relevance of biomarkers and enables efficient identification of translational gaps and opportunities. Based on the elucidated PKPD characteristics exhibited by a novel drug and the kinetics of the investigated biomarker, prospective predictions can be made for the drug response under new conditions; translating from the preclinical arena to the clinical setting, from the healthy volunteer to the patient, or from an adult to an elderly or a child. These drug response predictions provide support to decisions on appropriate next steps in the development of the drug, while keeping clear line of sight on the potential to address unmet medical need. Moreover, this framework enables a transparent translational risk assessment for drug hunting projects, and as such can underpin decisions at program and portfolio level.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小石头完成签到,获得积分10
刚刚
刚刚
万能图书馆应助俊逸若之采纳,获得10
1秒前
1秒前
shishuang发布了新的文献求助10
2秒前
科研通AI6应助大胆的平蓝采纳,获得10
2秒前
小蘑菇应助Magical采纳,获得10
2秒前
GJ发布了新的文献求助10
2秒前
2秒前
科研通AI6应助好名字采纳,获得10
3秒前
科研通AI6应助动听书文采纳,获得10
3秒前
lucky发布了新的文献求助10
4秒前
离子键发布了新的文献求助10
4秒前
liz发布了新的文献求助10
4秒前
strongfrog发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
灰灰成长中完成签到,获得积分10
5秒前
5秒前
今后应助温柔樱桃采纳,获得10
6秒前
高媛完成签到,获得积分20
7秒前
yuko完成签到 ,获得积分10
7秒前
7秒前
8秒前
俊逸若之完成签到,获得积分10
8秒前
Jasper应助xryhhh采纳,获得10
8秒前
烟花应助轻歌水越采纳,获得10
9秒前
9秒前
9秒前
DY发布了新的文献求助10
10秒前
张瑜发布了新的文献求助10
10秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
嘿嘿嘿发布了新的文献求助10
11秒前
细腻亦巧完成签到,获得积分10
11秒前
wang完成签到,获得积分10
11秒前
星河梦枕完成签到,获得积分10
12秒前
sober关注了科研通微信公众号
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608315
求助须知:如何正确求助?哪些是违规求助? 4692918
关于积分的说明 14876115
捐赠科研通 4717325
什么是DOI,文献DOI怎么找? 2544189
邀请新用户注册赠送积分活动 1509187
关于科研通互助平台的介绍 1472836