石墨烯
氧化还原
材料科学
电化学
电子转移
化学工程
化学
纳米技术
电极
光化学
冶金
工程类
物理化学
作者
Meilan Pan,Yanyang Zhang,Chao Shan,Xiaolin Zhang,Guandao Gao,Bingcai Pan
标识
DOI:10.1021/acs.est.7b01762
摘要
Graphene is easily warped in the out-of-plane direction because of its high in-plane Young's modulus, and exploring the influence of wrinkled graphene on its properties is essential for the design of graphene-based materials for environmental applications. Herein, we prepared wrinkled graphene (WGN-1 and WGN-2) by thermal treatment and compared their electrochemical properties with those of flat graphene nanosheets (FGN). FGN exhibit activities that are much better than those of wrinkled graphene nanosheets (WGN), not only in the electrochemical oxidation of methylene blue (MB) but also in the electrochemical reduction of nitrobenzene (NB). Transformation ratios of MB and NB in FGN, WGN-1, and WGN-2 were 97.5, 80.1, and 57.9% and 94.6, 92.1, and 81.2%, respectively. Electrochemical impedance spectroscopy and the surface resistance of the graphene samples increased in the following order: FGN < WGN-1 < WGN-2. This suggests that the reaction charges transfer faster across the reaction interfaces and along the surface of FGN than that of WGN, and wrinkles restrict reaction charge transfer and reduce the reaction rates. This study reveals that the morphology of the graphene (flat or wrinkle) greatly affects redox reaction activities and may have important implications for the design of novel graphene-based nanostructures and for our understanding of graphene wrinkle-dependent redox reactions in environmental processes.
科研通智能强力驱动
Strongly Powered by AbleSci AI