劈形算符
内哈里歧管
能量(信号处理)
常量(计算机编程)
无穷
歧管(流体力学)
数学物理
数学
物理
数学分析
非线性系统
组合数学
欧米茄
量子力学
工程类
机械工程
程序设计语言
计算机科学
出处
期刊:Discrete and Continuous Dynamical Systems
[American Institute of Mathematical Sciences]
日期:2015-01-01
卷期号:35 (8): 3857-3877
被引量:22
标识
DOI:10.3934/dcds.2015.35.3857
摘要
In this paper, we study the following nonlinear problem of Kirchhofftype:\begin{equation}\label{(0.1)}\left\{%\begin{array}{ll} -\left(a+b\int\limits_{\mathbb{R}^3}|\nabla u|^2\right)\Delta u+V(x)u=f(u), & \hbox{$x\in \mathbb{R}^3$}, \\ u>0, & \hbox{$x\in \mathbb{R}^3$}, (0.1) \\ \end{array}%\right.\end{equation}where $a,$ $b>0$ are constants, $V:\mathbb{R}^3\rightarrow\mathbb{R}$ and $f(t)$ is subcritical and superlinear at infinity. Under certain assumptions on non-constant potential $V$, we provethe existence of positive high energy solutions by using alinking argument with a barycenter map restricted on a Nehari-Pohožaev type manifold. Our main result has solved Kirchhoff equation (0.1) with superlinear nonlinearities, which has not been studied, and can be viewed as a partial extension of a recentresult of He and Zou in [9] concerning Kirchhoff equations with 4-superlinear nonlinearities.
科研通智能强力驱动
Strongly Powered by AbleSci AI