DyRep: Learning Representations over Dynamic Graphs

计算机科学 杠杆(统计) 理论计算机科学 编码 图形 特征学习 拓扑图论 动态网络分析 人工智能 代表(政治) 机器学习 电压图 基因 折线图 法学 化学 政治 生物化学 计算机网络 政治学
作者
Rakshit Trivedi,Mehrdad Farajtabar,Prasenjeet Biswal,Hongyuan Zha
出处
期刊:International Conference on Learning Representations 被引量:186
摘要

Representation Learning over graph structured data has received significant attention recently due to its ubiquitous applicability. However, most advancements have been made in static graph settings while efforts for jointly learning dynamic of the graph and dynamic on the graph are still in an infant stage. Two fundamental questions arise in learning over dynamic graphs: (i) How to elegantly model dynamical processes over graphs? (ii) How to leverage such a model to effectively encode evolving graph information into low-dimensional representations? We present DyRep - a novel modeling framework for dynamic graphs that posits representation learning as a latent mediation process bridging two observed processes namely -- dynamics of the network (realized as topological evolution) and dynamics on the network (realized as activities between nodes). Concretely, we propose a two-time scale deep temporal point process model that captures the interleaved dynamics of the observed processes. This model is further parameterized by a temporal-attentive representation network that encodes temporally evolving structural information into node representations which in turn drives the nonlinear evolution of the observed graph dynamics. Our unified framework is trained using an efficient unsupervised procedure and has capability to generalize over unseen nodes. We demonstrate that DyRep outperforms state-of-the-art baselines for dynamic link prediction and time prediction tasks and present extensive qualitative insights into our framework.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
威武鸽子发布了新的文献求助10
3秒前
打打应助mk91采纳,获得10
3秒前
爆米花应助cc采纳,获得10
3秒前
abcdef完成签到 ,获得积分20
4秒前
冷公子发布了新的文献求助30
6秒前
abcdef关注了科研通微信公众号
6秒前
8秒前
9秒前
11秒前
14秒前
16秒前
三跳发布了新的文献求助10
16秒前
Wjk完成签到,获得积分10
18秒前
ZY完成签到 ,获得积分10
19秒前
19秒前
20秒前
赘婿应助hongw1980采纳,获得10
22秒前
繁荣的凝荷完成签到 ,获得积分10
22秒前
大个应助邱丘邱采纳,获得15
23秒前
谷谷发布了新的文献求助10
23秒前
25秒前
孙彩瑛发布了新的文献求助10
26秒前
yuxiaobolab完成签到,获得积分10
30秒前
传奇3应助33采纳,获得10
32秒前
33秒前
37秒前
38秒前
Lv完成签到,获得积分10
38秒前
purplelove发布了新的文献求助10
42秒前
孙彩瑛完成签到,获得积分10
43秒前
酷波er应助争当科研巨匠采纳,获得10
44秒前
45秒前
47秒前
47秒前
49秒前
活泼半凡发布了新的文献求助10
50秒前
小程完成签到 ,获得积分10
50秒前
Yy杨优秀发布了新的文献求助10
51秒前
52秒前
不安毛豆发布了新的文献求助10
52秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998752
求助须知:如何正确求助?哪些是违规求助? 3538216
关于积分的说明 11273702
捐赠科研通 3277200
什么是DOI,文献DOI怎么找? 1807436
邀请新用户注册赠送积分活动 883893
科研通“疑难数据库(出版商)”最低求助积分说明 810075