Natural weathering severity of typical coastal environment on polystyrene: Experiment and modeling

风化作用 温带气候 光泽度(光学) 环境科学 聚苯乙烯 材料科学 气候变化 大气科学 自然地理学 复合材料 聚合物 地质学 地貌学 地理 海洋学 植物 生物 涂层
作者
Yu Shi,Jiaxiang Qin,Youji Tao,Ganxin Jie,Jun Wang
出处
期刊:Polymer Testing [Elsevier]
卷期号:76: 138-145 被引量:23
标识
DOI:10.1016/j.polymertesting.2019.03.018
摘要

Natural weathering of polystyrene (PS) was performed at six exposure sites with various climate types along the coastal line from China to Europe, including Qionghai (typical hot-humid climate), Sansha (island hot-humid climate), Chennai (savanna hot-humid climate), Jeddah (xerothermic climate), Sanary-sur-Mer (mediterranean climate), Hoek van Holland (warm-temperate climate). The chemical structure, morphology and color changes of PS after weathering were characterized by FTIR, DSC, SEM and Color spectrometer, and relative weathering severity of different climates on PS were compared. Results show that Sansha has the highest severity value while the severity value of Hoek van Holland is the lowest. The degradation degree of PS at the sites of Qionghai, Sansha, and Chennai is higher than that at other sites, resulted in a deterioration of the optical properties and serious damage of the sample surface. In the xerothermic climate, the optical properties of PS decrease drastically during the process of natural weathering, while only slight change in hydroxyl index and carbonyl index is observed, and micrographic surface does not differ from the surface of un-weathered materials. For other climates, the degradation degree was low, resulting in a relative slow change of optical properties and long time for the appearance of surface defects. In order to quantify the relative severity of these climates, a mathematic model was proposed based on the basic degradation principle of polymer materials, which could predict the failure time of PS. The failure time was predicted by the model using gloss loss of PS as failure index, with an accuracy up to 99.2%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热爱完成签到,获得积分10
刚刚
1秒前
叫滚滚发布了新的文献求助10
2秒前
星瑆心完成签到,获得积分10
2秒前
啦啦啦啦啦完成签到,获得积分10
3秒前
Lyg发布了新的文献求助10
3秒前
Dksido完成签到,获得积分10
4秒前
兰博基尼奥完成签到,获得积分10
4秒前
热情芷荷发布了新的文献求助10
6秒前
random完成签到,获得积分10
7秒前
7秒前
果果瑞宁完成签到,获得积分10
7秒前
8秒前
机智小虾米完成签到,获得积分20
8秒前
goldenfleece完成签到,获得积分10
9秒前
科研通AI2S应助学者采纳,获得10
9秒前
小杨完成签到,获得积分10
10秒前
sutharsons应助科研通管家采纳,获得30
11秒前
11秒前
Ava应助科研通管家采纳,获得10
11秒前
慕青应助科研通管家采纳,获得10
11秒前
所所应助科研通管家采纳,获得10
11秒前
在水一方应助科研通管家采纳,获得10
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得30
11秒前
传奇3应助科研通管家采纳,获得10
11秒前
科目三应助科研通管家采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
CipherSage应助科研通管家采纳,获得30
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
Eric_Lee2000应助科研通管家采纳,获得10
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
11秒前
王子完成签到,获得积分10
12秒前
李繁蕊发布了新的文献求助10
13秒前
诚心的大碗应助明理念桃采纳,获得20
13秒前
14秒前
meng完成签到,获得积分10
14秒前
学者完成签到,获得积分10
14秒前
英俊的铭应助愉快盼曼采纳,获得10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808