Sig-NMS-Based Faster R-CNN Combining Transfer Learning for Small Target Detection in VHR Optical Remote Sensing Imagery

计算机科学 像素 卷积神经网络 遥感 学习迁移 人工智能 数据集 目标检测 集合(抽象数据类型) 上下文图像分类 模式识别(心理学) 传输(计算) 计算机视觉 深度学习 图像(数学) 地质学 并行计算 程序设计语言
作者
Ruchan Dong,Dazhuan Xu,Jin Zhao,Licheng Jiao,Jungang An
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:57 (11): 8534-8545 被引量:80
标识
DOI:10.1109/tgrs.2019.2921396
摘要

Small target detection is a challenging task in veryhigh-resolution (VHR) optical remote sensing imagery, because small targets occupy a minuscule number of pixels and are easily disturbed by backgrounds or occluded by others. Although current convolutional neural network (CNN)-based approaches perform well when detecting normal objects, they are barely suitable for detecting small ones. Two practical problems stand in their way. First, current CNN-based approaches are not specifically designed for the minuscule size of small targets (~15 or ~10 pixels in extent). Second, no well-established data sets include labeled small targets and establishing one from scratch is labor-intensive and time-consuming. To address these two issues, we propose an approach that combines Sig-NMS-based Faster R-CNN with transfer learning. Sig-NMS replaces traditional non-maximum suppression (NMS) in the stage of region proposal network and decreases the possibility of missing small targets. Transfer learning can effectively label remote sensing images by automatically annotating both object classes and object locations. We conduct an experiment on three data sets of VHR optical remote sensing images, RSOD, LEVIR, and NWPU VHR-10, to validate our approach. The results demonstrate that the proposed approach can effectively detect small targets in the VHR optical remote sensing images of about 10 × 10 pixels and automatically label small targets as well. In addition, our method presents better mean average precisions than other state-of-the-art methods: 1.5% higher when performing on the RSOD data set, 17.8% higher on the LEVIR data set, and 3.8% higher on NWPU VHR-10.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HOPE发布了新的文献求助10
1秒前
欣慰的凡儿完成签到,获得积分10
1秒前
香蕉觅云应助elsa采纳,获得10
2秒前
2秒前
共享精神应助天真咖啡豆采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
5秒前
打打应助科研通管家采纳,获得10
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得30
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
6秒前
fuyuan发布了新的文献求助10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
6秒前
烟花应助科研通管家采纳,获得10
6秒前
大个应助科研通管家采纳,获得10
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
6秒前
Ava应助科研通管家采纳,获得10
6秒前
6666完成签到,获得积分20
6秒前
芯止谭轩发布了新的文献求助20
7秒前
zoie0809发布了新的文献求助10
7秒前
道阻且长完成签到,获得积分10
7秒前
8秒前
9秒前
9秒前
9秒前
6666发布了新的文献求助10
9秒前
1111完成签到,获得积分10
10秒前
高高一鸣完成签到 ,获得积分20
10秒前
10秒前
11秒前
12秒前
大模型应助壮观柔采纳,获得10
12秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735677
求助须知:如何正确求助?哪些是违规求助? 3279465
关于积分的说明 10015528
捐赠科研通 2996202
什么是DOI,文献DOI怎么找? 1643929
邀请新用户注册赠送积分活动 781579
科研通“疑难数据库(出版商)”最低求助积分说明 749423