Separate to Adapt: Open Set Domain Adaptation via Progressive Separation

分类器(UML) 域适应 计算机科学 加权 领域(数学分析) 开放的体验 人工智能 适应(眼睛) 集合(抽象数据类型) 水准点(测量) 开放集 数据挖掘 模式识别(心理学) 机器学习 数学 生物 地理 大地测量学 放射科 数学分析 离散数学 神经科学 社会心理学 医学 程序设计语言 心理学
作者
Hong Liu,Zhangjie Cao,Mingsheng Long,Jianmin Wang,Qiang Yang
标识
DOI:10.1109/cvpr.2019.00304
摘要

Domain adaptation has become a resounding success in leveraging labeled data from a source domain to learn an accurate classifier for an unlabeled target domain. When deployed in the wild, the target domain usually contains unknown classes that are not observed in the source domain. Such setting is termed Open Set Domain Adaptation (OSDA). While several methods have been proposed to address OSDA, none of them takes into account the openness of the target domain, which is measured by the proportion of unknown classes in all target classes. Openness is a critical point in open set domain adaptation and exerts a significant impact on performance. In addition, current work aligns the entire target domain with the source domain without excluding unknown samples, which may give rise to negative transfer due to the mismatch between unknown and known classes. To this end, this paper presents Separate to Adapt (STA), an end-to-end approach to open set domain adaptation. The approach adopts a coarse-to-fine weighting mechanism to progressively separate the samples of unknown and known classes, and simultaneously weigh their importance on feature distribution alignment. Our approach allows openness-robust open set domain adaptation, which can be adaptive to a variety of openness in the target domain. We evaluate STA on several benchmark datasets of various openness levels. Results verify that STA significantly outperforms previous methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助Ricky采纳,获得10
1秒前
小毛线发布了新的文献求助10
2秒前
orixero应助Aaron采纳,获得10
2秒前
3秒前
常常完成签到,获得积分10
5秒前
笑哈哈完成签到,获得积分10
6秒前
6秒前
Need_Knowledge完成签到,获得积分10
7秒前
欢呼问旋完成签到,获得积分10
8秒前
9秒前
隐形曼青应助陈陈采纳,获得10
10秒前
研友_VZG7GZ应助Need_Knowledge采纳,获得10
10秒前
sihui完成签到,获得积分10
10秒前
搜集达人应助啊巴拉采纳,获得10
11秒前
Aaron完成签到,获得积分10
12秒前
Shacoooo发布了新的文献求助10
12秒前
小毛线完成签到,获得积分10
13秒前
13秒前
Ricky发布了新的文献求助10
14秒前
铭心发布了新的文献求助10
15秒前
李雨珍完成签到,获得积分10
15秒前
17秒前
17秒前
17秒前
19秒前
汽水味发布了新的文献求助10
20秒前
Aaron发布了新的文献求助10
20秒前
陈陈发布了新的文献求助10
22秒前
23秒前
轩轩发布了新的文献求助10
23秒前
liden发布了新的文献求助10
26秒前
NexusExplorer应助轩轩采纳,获得10
27秒前
SCIfafafafa发布了新的文献求助10
28秒前
桐桐应助科研通管家采纳,获得10
29秒前
SciGPT应助科研通管家采纳,获得10
29秒前
地表飞猪应助科研通管家采纳,获得10
29秒前
wanci应助科研通管家采纳,获得10
29秒前
29秒前
Lucas应助科研通管家采纳,获得10
29秒前
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967131
求助须知:如何正确求助?哪些是违规求助? 3512470
关于积分的说明 11163384
捐赠科研通 3247378
什么是DOI,文献DOI怎么找? 1793799
邀请新用户注册赠送积分活动 874615
科研通“疑难数据库(出版商)”最低求助积分说明 804450