已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Time series analysis and long short-term memory neural network to predict landslide displacement

流离失所(心理学) 短时记忆 系列(地层学) 计算机科学 人工智能
作者
Beibei Yang,Kunlong Yin,Suzanne Lacasse,Zhongqiang Liu
出处
期刊:Landslides [Springer Nature]
卷期号:16 (4): 677-694 被引量:86
标识
DOI:10.1007/s10346-018-01127-x
摘要

A good prediction of landslide displacement is an essential component for implementing an early warning system. In the Three Gorges Reservoir Area (TGRA), many landslides deform distinctly and in steps from April to September each year under the influence of seasonal rainfall and periodic fluctuation in reservoir water level. The sliding becomes more uniform again from October to April. This landslide deformation pattern leads to accumulated displacement versus time showing a step-wise curve. Most of the existing predictive models express static relationships only. However, the evolution of a landslide is a complex nonlinear dynamic process. This paper proposes a dynamic model to predict landslide displacement, based on time series analysis and long short-term memory (LSTM) neural network. The accumulated displacement was decomposed into a trend term and a periodic term in the time series analysis. A cubic polynomial function was selected to predict the trend displacement. By analyzing the relationships between landslide deformation, rainfall, and reservoir water level, a LSTM model was used to predict the periodic displacement. The LSTM approach was found to properly model the dynamic characteristics of landslides than static models, and make full use of the historical information. The performance of the model was validated with the observations of two step-wise landslides in the TGRA, the Baishuihe landslide and Bazimen landslide. The application of the model to those two landslides demonstrates that the LSTM model provides a good representation of the measured displacements and gives a more reliable prediction of landslide displacement than the static support vector machine (SVM) model. It is concluded that the proposed model can be used to effectively predict the displacement of step-wise landslides in the TGRA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
Wish发布了新的文献求助10
7秒前
8秒前
12秒前
数据线发布了新的文献求助10
13秒前
18秒前
LeuinPonsgi完成签到,获得积分10
19秒前
tanhaowen发布了新的文献求助10
20秒前
大力黑米完成签到 ,获得积分10
22秒前
板蓝根完成签到,获得积分10
24秒前
Sky完成签到,获得积分10
24秒前
28秒前
Owen应助若然冬天没有花采纳,获得10
29秒前
甜美的问蕊完成签到 ,获得积分10
29秒前
30秒前
Wish完成签到,获得积分10
33秒前
33秒前
winterm发布了新的文献求助10
35秒前
kerri发布了新的文献求助10
36秒前
俊秀的南烟完成签到,获得积分20
37秒前
39秒前
VPN不好用发布了新的文献求助10
41秒前
善学以致用应助winterm采纳,获得10
43秒前
李华完成签到,获得积分10
45秒前
桐桐应助haoooooooooooooo采纳,获得10
46秒前
kdjm688完成签到,获得积分10
47秒前
nnnick完成签到,获得积分0
48秒前
三更笔舞完成签到,获得积分10
50秒前
53秒前
NiceSunnyDay完成签到 ,获得积分10
53秒前
白綀完成签到 ,获得积分10
53秒前
kerri完成签到,获得积分20
56秒前
Amikacin完成签到,获得积分10
56秒前
大模型应助三更笔舞采纳,获得10
56秒前
56秒前
58秒前
郑雅柔完成签到 ,获得积分10
1分钟前
甜茶完成签到,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133873
求助须知:如何正确求助?哪些是违规求助? 2784787
关于积分的说明 7768500
捐赠科研通 2440159
什么是DOI,文献DOI怎么找? 1297188
科研通“疑难数据库(出版商)”最低求助积分说明 624901
版权声明 600791