Time series analysis and long short-term memory neural network to predict landslide displacement

流离失所(心理学) 短时记忆 系列(地层学) 计算机科学 人工智能
作者
Beibei Yang,Kunlong Yin,Suzanne Lacasse,Zhongqiang Liu
出处
期刊:Landslides [Springer Science+Business Media]
卷期号:16 (4): 677-694 被引量:86
标识
DOI:10.1007/s10346-018-01127-x
摘要

A good prediction of landslide displacement is an essential component for implementing an early warning system. In the Three Gorges Reservoir Area (TGRA), many landslides deform distinctly and in steps from April to September each year under the influence of seasonal rainfall and periodic fluctuation in reservoir water level. The sliding becomes more uniform again from October to April. This landslide deformation pattern leads to accumulated displacement versus time showing a step-wise curve. Most of the existing predictive models express static relationships only. However, the evolution of a landslide is a complex nonlinear dynamic process. This paper proposes a dynamic model to predict landslide displacement, based on time series analysis and long short-term memory (LSTM) neural network. The accumulated displacement was decomposed into a trend term and a periodic term in the time series analysis. A cubic polynomial function was selected to predict the trend displacement. By analyzing the relationships between landslide deformation, rainfall, and reservoir water level, a LSTM model was used to predict the periodic displacement. The LSTM approach was found to properly model the dynamic characteristics of landslides than static models, and make full use of the historical information. The performance of the model was validated with the observations of two step-wise landslides in the TGRA, the Baishuihe landslide and Bazimen landslide. The application of the model to those two landslides demonstrates that the LSTM model provides a good representation of the measured displacements and gives a more reliable prediction of landslide displacement than the static support vector machine (SVM) model. It is concluded that the proposed model can be used to effectively predict the displacement of step-wise landslides in the TGRA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
朱光辉发布了新的文献求助10
2秒前
2秒前
Jenice完成签到,获得积分10
2秒前
2秒前
今后应助小十采纳,获得10
5秒前
香蕉觅云应助学术小废物采纳,获得10
6秒前
呆呆鱼完成签到,获得积分10
6秒前
Arizonacyy发布了新的文献求助10
6秒前
FashionBoy应助曾馨慧采纳,获得10
7秒前
7秒前
科研废发布了新的文献求助10
7秒前
胖箭鱼发布了新的文献求助10
8秒前
李彦完成签到,获得积分10
8秒前
9秒前
爆米花应助斑马还没睡采纳,获得10
10秒前
JJ发布了新的文献求助10
10秒前
青山完成签到,获得积分10
11秒前
开朗断秋发布了新的文献求助10
12秒前
CodeCraft应助饭团采纳,获得10
12秒前
13秒前
16秒前
在水一方应助少华采纳,获得10
17秒前
蔡蔡完成签到 ,获得积分10
17秒前
17秒前
默认用户名完成签到,获得积分10
17秒前
18秒前
ctrl少个T完成签到,获得积分20
18秒前
小蘑菇应助科研通管家采纳,获得10
20秒前
scm应助科研通管家采纳,获得30
20秒前
所所应助科研通管家采纳,获得10
20秒前
传奇3应助科研通管家采纳,获得10
20秒前
慕青应助科研通管家采纳,获得10
20秒前
无花果应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
20秒前
现代的访曼应助hdd采纳,获得20
20秒前
曾馨慧发布了新的文献求助10
20秒前
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959733
求助须知:如何正确求助?哪些是违规求助? 3505997
关于积分的说明 11127227
捐赠科研通 3237941
什么是DOI,文献DOI怎么找? 1789411
邀请新用户注册赠送积分活动 871726
科研通“疑难数据库(出版商)”最低求助积分说明 803000