Personality traits are related with dynamic functional connectivity in major depression disorder: A resting-state analysis

重性抑郁障碍 心理学 萧条(经济学) 人格 功能连接 静息状态功能磁共振成像 边缘型人格障碍 临床心理学 精神科 神经科学 心情 社会心理学 宏观经济学 经济
作者
Xinran Wu,Hong He,Liang Shi,Yunman Xia,Kaixiang Zuang,Qiuyang Feng,Yao Zhang,Zhiting Ren,Dongtao Wei,Jiang Qiu
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:245: 1032-1042 被引量:60
标识
DOI:10.1016/j.jad.2018.11.002
摘要

Major depressive disorder (MDD) is one of the most well-known psychiatric disorders, which can be destructive for its damage to people's normal cognitive, emotional and social functions. Personality refers to the unique and stable character of thinking and behavior style of an individual, which has long been thought as a key influence factor for MDD. Although some knowledge about the common neural basic between MDD and personality traits has been acquired, there are few studies exploring dynamic neural mechanism behind them, which changes brain connectivity pattern rapidly to adapt to the environment over time. In this study, the emerging dynamic functional network connectivity (DFNC) method was used in resting-state fMRI data to find the differences between healthy group (N = 107) and MDD group (N = 109) in state-based dynamic measures, and the correlations between these measures and personality traits (extraversion and neuroticism in Eysenck Personality Questionnaire, EPQ) were explored. The results showed that MDD was significantly less than the health control group in dwell time and fraction time of state 4, which was positively correlated with extraversion score and negatively correlated with neuroticism score. Further exploration on state 4 showed that it had low modularity, hyper-connectedness of sensory-related regions and DMN, and weak connections between cortex and subcortical areas, which suggested that the absence of this state in MDD might represent a decrease in activity and positive emotions. We found the dynamic functional connectivity mechanism underlying MDD, confirmed our hypothesis that there existed the interacted relationship between trait, disease and the brain's dynamic characteristic, and suggested some reference for treatment of depression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助cybbbbbb采纳,获得10
刚刚
果汁发布了新的文献求助10
刚刚
1秒前
1秒前
Lucas应助柚子采纳,获得10
1秒前
MADKAI发布了新的文献求助10
1秒前
2秒前
爆米花应助咕咕咕采纳,获得10
2秒前
zxy发布了新的文献求助10
2秒前
3秒前
醉人的仔发布了新的文献求助10
3秒前
daguan完成签到,获得积分10
3秒前
桐桐应助nikai采纳,获得10
3秒前
4秒前
5秒前
123完成签到,获得积分10
5秒前
善良香岚发布了新的文献求助10
5秒前
6秒前
6秒前
444完成签到,获得积分10
6秒前
任一发布了新的文献求助30
6秒前
莉莉发布了新的文献求助10
7秒前
Zoe发布了新的文献求助10
7秒前
Hover完成签到,获得积分10
7秒前
自然的茉莉完成签到,获得积分10
8秒前
8秒前
Mandy完成签到,获得积分10
8秒前
9秒前
脑洞疼应助qaq采纳,获得10
9秒前
世界尽头发布了新的文献求助10
9秒前
小二郎应助科研民工采纳,获得10
9秒前
10秒前
无奈满天发布了新的文献求助10
10秒前
11秒前
MADKAI发布了新的文献求助10
11秒前
11秒前
贪玩丸子完成签到,获得积分10
11秒前
神勇的雅香应助liutaili采纳,获得10
12秒前
KSGGS完成签到,获得积分10
12秒前
YANG关注了科研通微信公众号
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759