Spectral data completion for dual-source x-ray CT

背景(考古学) 计算机科学 迭代重建 投影(关系代数) 光谱成像 人工智能 算法 物理 光学 生物 古生物学
作者
Darin P. Clark,Cristian T. Badea
出处
期刊:Medical Imaging 2019: Physics of Medical Imaging 被引量:2
标识
DOI:10.1117/12.2512825
摘要

In the context of x-ray CT, data completion is the process of augmenting truncated projection data to avoid artifacts during reconstruction. Data completion is commonly employed in dual-source CT where physical or hardware constraints limit the field of view covered by one of the two imaging chains. Practically, data completion is accomplished by extrapolating missing data based on the imaging chain with the full field of view, including some reweighting to approximate any spectral differences. While this approach works well in clinical applications, there are applications which would benefit from improved spectral estimation over the full field of view, including model-based iterative reconstruction, contrastenhanced abdominal imaging of large patients, and combined temporal and spectral imaging. Additionally, robust spectral data completion methods could provide an alternative to interior tomography for dose management in cardiac and spectral CT applications. To illustrate challenges with and potential machine-learning (ML) solutions for the spectral data completion problem, we present two realistic simulation experiments. A circular, cone-beam experiment disambiguates three contrast materials with dual-energy data and uses a generative network to inject 3D geometric information into a 2D, image-domain completion problem. A second clinical MDCT experiment uses a sophisticated variational network based on the split Bregman method and is structured to integrate directly into existing analytical reconstruction pipelines. While further work is required to establish performance limits and expectations, the results of both experiments strongly recommend the use of ML in spectral data completion problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
高大的煎饼完成签到,获得积分10
刚刚
小张z完成签到,获得积分10
1秒前
1秒前
en发布了新的文献求助10
1秒前
Carpe_Diem_2079完成签到,获得积分10
1秒前
科研通AI2S应助孟令涛采纳,获得10
2秒前
北纬工人完成签到,获得积分10
2秒前
大气傲易完成签到 ,获得积分10
2秒前
开心之王完成签到,获得积分10
3秒前
3秒前
bkagyin应助王雪儿哈哈哈采纳,获得10
3秒前
3秒前
3秒前
雷小牛发布了新的文献求助10
4秒前
Singularity应助xuan采纳,获得10
4秒前
4秒前
周斌发布了新的文献求助10
4秒前
123完成签到,获得积分10
4秒前
情怀应助活泼的大哥哥采纳,获得10
5秒前
auraLyV完成签到,获得积分10
6秒前
番茄酱发布了新的文献求助10
7秒前
hjh完成签到,获得积分10
7秒前
yilin完成签到 ,获得积分10
7秒前
hgy发布了新的文献求助10
8秒前
Jasper应助miao采纳,获得10
8秒前
香飘飘完成签到,获得积分10
8秒前
9秒前
yang发布了新的文献求助10
10秒前
Vaim发布了新的文献求助10
11秒前
lyt发布了新的文献求助10
11秒前
12秒前
smj完成签到,获得积分20
12秒前
12秒前
wanci应助慈祥的乐菱采纳,获得10
13秒前
13秒前
我是老大应助DQY采纳,获得10
13秒前
moxuyio完成签到,获得积分10
13秒前
充电宝应助cocopuff采纳,获得10
14秒前
14秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159243
求助须知:如何正确求助?哪些是违规求助? 2810372
关于积分的说明 7887509
捐赠科研通 2469200
什么是DOI,文献DOI怎么找? 1314702
科研通“疑难数据库(出版商)”最低求助积分说明 630697
版权声明 602012