亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Spectral data completion for dual-source x-ray CT

背景(考古学) 计算机科学 迭代重建 投影(关系代数) 光谱成像 人工智能 算法 物理 光学 生物 古生物学
作者
Darin P. Clark,Cristian T. Badea
出处
期刊:Medical Imaging 2019: Physics of Medical Imaging 被引量:2
标识
DOI:10.1117/12.2512825
摘要

In the context of x-ray CT, data completion is the process of augmenting truncated projection data to avoid artifacts during reconstruction. Data completion is commonly employed in dual-source CT where physical or hardware constraints limit the field of view covered by one of the two imaging chains. Practically, data completion is accomplished by extrapolating missing data based on the imaging chain with the full field of view, including some reweighting to approximate any spectral differences. While this approach works well in clinical applications, there are applications which would benefit from improved spectral estimation over the full field of view, including model-based iterative reconstruction, contrastenhanced abdominal imaging of large patients, and combined temporal and spectral imaging. Additionally, robust spectral data completion methods could provide an alternative to interior tomography for dose management in cardiac and spectral CT applications. To illustrate challenges with and potential machine-learning (ML) solutions for the spectral data completion problem, we present two realistic simulation experiments. A circular, cone-beam experiment disambiguates three contrast materials with dual-energy data and uses a generative network to inject 3D geometric information into a 2D, image-domain completion problem. A second clinical MDCT experiment uses a sophisticated variational network based on the split Bregman method and is structured to integrate directly into existing analytical reconstruction pipelines. While further work is required to establish performance limits and expectations, the results of both experiments strongly recommend the use of ML in spectral data completion problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
17秒前
21秒前
25秒前
oscar完成签到,获得积分10
39秒前
番茄汤锅完成签到,获得积分10
47秒前
51秒前
56秒前
爱静静应助科研通管家采纳,获得10
59秒前
爱静静应助科研通管家采纳,获得10
59秒前
爱静静应助科研通管家采纳,获得10
59秒前
爱静静应助科研通管家采纳,获得10
59秒前
爱静静应助科研通管家采纳,获得10
59秒前
爱静静应助科研通管家采纳,获得10
59秒前
爱静静应助科研通管家采纳,获得10
59秒前
爱静静应助科研通管家采纳,获得10
59秒前
爱静静应助科研通管家采纳,获得10
59秒前
59秒前
59秒前
爱静静应助科研通管家采纳,获得10
59秒前
爱静静应助科研通管家采纳,获得10
59秒前
1分钟前
Airport完成签到 ,获得积分10
1分钟前
2分钟前
SciGPT应助英勇兔子采纳,获得10
2分钟前
2分钟前
2分钟前
rrrrr完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
英勇兔子发布了新的文献求助10
2分钟前
rrrrr发布了新的文献求助10
2分钟前
852应助拖拖采纳,获得10
2分钟前
李亚宁发布了新的文献求助10
2分钟前
挺酷的发布了新的文献求助10
2分钟前
万能图书馆应助叫滚滚采纳,获得10
2分钟前
2分钟前
叫滚滚完成签到,获得积分10
2分钟前
叫滚滚发布了新的文献求助10
2分钟前
2分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968433
求助须知:如何正确求助?哪些是违规求助? 3513255
关于积分的说明 11167056
捐赠科研通 3248604
什么是DOI,文献DOI怎么找? 1794280
邀请新用户注册赠送积分活动 874990
科研通“疑难数据库(出版商)”最低求助积分说明 804629