Precise Modeling of the Protective Effects of Quercetin against Mycotoxin via System Identification with Neural Networks

细胞毒性 赫拉 活力测定 乳酸脱氢酶 槲皮素 化学 神经毒性 药理学 细胞 生物化学 体外 生物 毒性 抗氧化剂 有机化学
作者
Changju Yang,Entaz Bahar,Shyam Prasad Adhikari,Seo-Jeong Kim,Hyongsuk Kim,Hyonok Yoon
出处
期刊:International Journal of Molecular Sciences [Multidisciplinary Digital Publishing Institute]
卷期号:20 (7): 1725-1725 被引量:4
标识
DOI:10.3390/ijms20071725
摘要

Cell cytotoxicity assays, such as cell viability and lactate dehydrogenase (LDH) activity assays, play an important role in toxicological studies of pharmaceutical compounds. However, precise modeling for cytotoxicity studies is essential for successful drug discovery. The aim of our study was to develop a computational modeling that is capable of performing precise prediction, processing, and data representation of cell cytotoxicity. For this, we investigated protective effect of quercetin against various mycotoxins (MTXs), including citrinin (CTN), patulin (PAT), and zearalenol (ZEAR) in four different human cancer cell lines (HeLa, PC-3, Hep G2, and SK-N-MC) in vitro. In addition, the protective effect of quercetin (QCT) against various MTXs was verified via modeling of their nonlinear protective functions using artificial neural networks. The protective model of QCT is built precisely via learning of sparsely measured experimental data by the artificial neural networks (ANNs). The neuromodel revealed that QCT pretreatment at doses of 7.5 to 20 μg/mL significantly attenuated MTX-induced alteration of the cell viability and the LDH activity on HeLa, PC-3, Hep G2, and SK-N-MC cell lines. It has shown that the neuromodel can be used to predict the protective effect of QCT against MTX-induced cytotoxicity for the measurement of percentage (%) of inhibition, cell viability, and LDH activity of MTXs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shinco完成签到,获得积分20
刚刚
1秒前
CHRIS完成签到,获得积分10
2秒前
啦啦啦喽发布了新的文献求助10
3秒前
任小九完成签到,获得积分20
3秒前
4秒前
4秒前
keira发布了新的文献求助30
5秒前
赵成龙发布了新的文献求助10
5秒前
李健应助热心小松鼠采纳,获得10
5秒前
Ava应助热心小松鼠采纳,获得10
5秒前
深情安青应助热心小松鼠采纳,获得10
5秒前
Ava应助热心小松鼠采纳,获得10
5秒前
情怀应助热心小松鼠采纳,获得10
5秒前
英俊的铭应助卡农采纳,获得10
5秒前
orixero应助热心小松鼠采纳,获得10
5秒前
FashionBoy应助热心小松鼠采纳,获得30
5秒前
顾矜应助热心小松鼠采纳,获得10
6秒前
Owen应助热心小松鼠采纳,获得10
6秒前
nuomi发布了新的文献求助10
6秒前
共享精神应助热心小松鼠采纳,获得10
6秒前
chen完成签到,获得积分10
7秒前
小马甲应助CHRIS采纳,获得10
9秒前
9秒前
9秒前
ysy完成签到,获得积分10
9秒前
9秒前
will完成签到,获得积分10
9秒前
小郭发布了新的文献求助10
10秒前
11秒前
万事顺遂发布了新的文献求助10
11秒前
12秒前
阔达一刀发布了新的文献求助10
14秒前
dadadaxia完成签到,获得积分10
14秒前
14秒前
隐形曼青应助潘宋采纳,获得10
14秒前
error完成签到,获得积分10
15秒前
libob发布了新的文献求助10
15秒前
科研通AI5应助LIYUAN采纳,获得10
16秒前
111发布了新的文献求助10
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966742
求助须知:如何正确求助?哪些是违规求助? 3512237
关于积分的说明 11162366
捐赠科研通 3247107
什么是DOI,文献DOI怎么找? 1793690
邀请新用户注册赠送积分活动 874549
科研通“疑难数据库(出版商)”最低求助积分说明 804432