材料科学
化学工程
降级(电信)
电极
涂层
锂(药物)
相(物质)
阴极
氧化物
离子
储能
复合材料
冶金
工程类
内分泌学
物理
物理化学
功率(物理)
有机化学
化学
电信
医学
量子力学
计算机科学
作者
Sijiang Hu,Yu Li,Yuhua Chen,Jiming Peng,Tengfei Zhou,Wei Kong Pang,Christophe Didier,Vanessa K. Peterson,Hongqiang Wang,Qingyu Li,Zhanhu Guo
标识
DOI:10.1002/aenm.201901795
摘要
Abstract Li‐rich layered oxides (LLOs) can deliver almost double the capacity of conventional electrode materials such as LiCoO 2 and LiMn 2 O 4 ; however, voltage fade and capacity degradation are major obstacles to the practical implementation of LLOs in high‐energy lithium‐ion batteries. Herein, hexagonal La 0.8 Sr 0.2 MnO 3− y (LSM) is used as a protective and phase‐compatible surface layer to stabilize the Li‐rich layered Li 1.2 Ni 0.13 Co 0.13 Mn 0.54 O 2 (LM) cathode material. The LSM is MnO M bonded at the LSM/LM interface and functions by preventing the migration of metal ions in the LM associated with capacity degradation as well as enhancing the electrical transfer and ionic conductivity at the interface. The LSM‐coated LM delivers an enhanced reversible capacity of 202 mAh g −1 at 1 C (260 mA g −1 ) with excellent cycling stability and rate capability (94% capacity retention after 200 cycles and 144 mAh g −1 at 5 C). This work demonstrates that interfacial bonding between coating and bulk material is a successful strategy for the modification of LLO electrodes for the next‐generation of high‐energy Li‐ion batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI