The nanocomposites of activated-carbon-decorated silicon nanocrystals (ACAC) were synchronously derived in a single step from biomass rice husks, through the simple route of the calcination method together with the magnesiothermic reduction process. The final product, ACAC, exhibited an aggregated structure of activated-carbon-encapsulated nanocrystalline silicon spheres, and reveals a high specific surface area (498.5 m2/g). Owing to the mutualization of advantages from both silicon nanocrystals (i.e., low discharge potential and high specific capacity) and activated carbon (i.e., high porosity and good electrical conductivity), the ACAC nanocomposites are able to play a substantial role as an anodic source material for the lithium-ion battery (LIB). Namely, a high coulombic efficiency (97.5%), a high discharge capacity (716 mAh/g), and a high reversible specific capacity (429 mAh/g after 100 cycles) were accomplished when using ACAC as an LIB anode. The results advocate that the simultaneous synthesis of biomass-derived ACAC is beneficial for green energy-storage device applications.