The direct reduction of arenes and heteroarenes by visible-light irradiation remains challenging, as the energy of a single photon is not sufficient for breaking aromatic stabilization. Shown herein is that the energy accumulation of two visible-light photons allows the dearomatization of arenes and heteroarenes. Mechanistic investigations confirm that the combination of energy-transfer and electron-transfer processes generates an arene radical anion, which is subsequently trapped by hydrogen-atom transfer and finally protonated to form the dearomatized product. The photoreduction converts planar aromatic feedstock compounds into molecular skeletons that are of use in organic synthesis.