Large-scale User Visits Understanding and Forecasting with Deep Spatial-Temporal Tensor Factorization Framework

计算机科学 可扩展性 机器学习 矩阵分解 人工智能 比例(比率) 深度学习 适应性 时间序列 数据挖掘 在线广告 互联网 数据科学 万维网 生物 数据库 物理 量子力学 特征向量 生态学
作者
Xiaoyang Ma,Lan Zhang,Lan Xu,Zhicheng Liu,Chen Ge,Zhili Xiao,Yang Wang,Zhengtao Wu
标识
DOI:10.1145/3292500.3330728
摘要

Understanding and forecasting user visits is of great importance for a variety of tasks, e.g., online advertising, which is one of the most profitable business models for Internet services. Publishers sell advertising spaces in advance with user visit volume and attributes guarantees. There are usually tens of thousands of attribute combinations in an online advertising system. The key problem is how to accurately forecast the number of user visits for each attribute combination. Many traditional work characterizing temporal trends of every single time series are quite inefficient for large-scale time series. Recently, a number of models based on deep learning or matrix factorization have been proposed for high-dimensional time series forecasting. However, most of them neglect correlations among attribute combinations, or are tailored for specific applications, resulting in poor adaptability for different business scenarios.Besides, sophisticated deep learning models usually cause high time and space complexity. There is still a lack of an efficient highly scalable and adaptable solution for accurate high-dimensional time series forecasting. To address this issue, in this work, we conduct a thorough analysis on large-scale user visits data and propose a novel deep spatial-temporal tensor factorization framework, which provides a general design for high-dimensional time series forecasting. We deployed the proposed framework in Tencent online guaranteed delivery advertising system, and extensively evaluated the effectiveness and efficiency of the framework in two different large-scale application scenarios. The results show that our framework outperforms existing methods in prediction accuracy. Meanwhile, it significantly reduces the parameter number and is resistant to incomplete data with up to 20% missing values.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
可爱的函函应助贾克斯采纳,获得10
3秒前
丘比特应助你雕姐采纳,获得10
3秒前
ceeray23发布了新的文献求助20
3秒前
CodeCraft应助自由抽屉采纳,获得10
3秒前
华仔应助pogia采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
4秒前
4秒前
浮游应助科研通管家采纳,获得10
4秒前
lucky应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
4秒前
今后应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得100
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
zsl完成签到 ,获得积分10
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
yujx发布了新的文献求助10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
肖塑昱发布了新的文献求助30
4秒前
科目三应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得150
4秒前
完美世界应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
5秒前
6秒前
愉快梦之完成签到,获得积分10
7秒前
孙翘楚完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
lyt发布了新的文献求助10
8秒前
shelly发布了新的文献求助10
8秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125255
求助须知:如何正确求助?哪些是违规求助? 4329165
关于积分的说明 13490305
捐赠科研通 4163976
什么是DOI,文献DOI怎么找? 2282666
邀请新用户注册赠送积分活动 1283801
关于科研通互助平台的介绍 1223079