Large-scale User Visits Understanding and Forecasting with Deep Spatial-Temporal Tensor Factorization Framework

计算机科学 可扩展性 机器学习 矩阵分解 人工智能 比例(比率) 深度学习 适应性 时间序列 数据挖掘 在线广告 互联网 数据科学 万维网 生物 数据库 物理 量子力学 特征向量 生态学
作者
Xiaoyang Ma,Lan Zhang,Lan Xu,Zhicheng Liu,Chen Ge,Zhili Xiao,Yang Wang,Zhengtao Wu
标识
DOI:10.1145/3292500.3330728
摘要

Understanding and forecasting user visits is of great importance for a variety of tasks, e.g., online advertising, which is one of the most profitable business models for Internet services. Publishers sell advertising spaces in advance with user visit volume and attributes guarantees. There are usually tens of thousands of attribute combinations in an online advertising system. The key problem is how to accurately forecast the number of user visits for each attribute combination. Many traditional work characterizing temporal trends of every single time series are quite inefficient for large-scale time series. Recently, a number of models based on deep learning or matrix factorization have been proposed for high-dimensional time series forecasting. However, most of them neglect correlations among attribute combinations, or are tailored for specific applications, resulting in poor adaptability for different business scenarios.Besides, sophisticated deep learning models usually cause high time and space complexity. There is still a lack of an efficient highly scalable and adaptable solution for accurate high-dimensional time series forecasting. To address this issue, in this work, we conduct a thorough analysis on large-scale user visits data and propose a novel deep spatial-temporal tensor factorization framework, which provides a general design for high-dimensional time series forecasting. We deployed the proposed framework in Tencent online guaranteed delivery advertising system, and extensively evaluated the effectiveness and efficiency of the framework in two different large-scale application scenarios. The results show that our framework outperforms existing methods in prediction accuracy. Meanwhile, it significantly reduces the parameter number and is resistant to incomplete data with up to 20% missing values.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得30
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
1秒前
文静应助科研通管家采纳,获得10
1秒前
star应助科研通管家采纳,获得150
2秒前
从容栾完成签到,获得积分20
2秒前
田様应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
天天快乐应助蓓蓓0303采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
star应助科研通管家采纳,获得100
2秒前
情怀应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得30
2秒前
2秒前
科目三应助科研通管家采纳,获得10
2秒前
2秒前
3秒前
3秒前
3秒前
3秒前
紫色茄子关注了科研通微信公众号
3秒前
丘比特应助李照慧采纳,获得10
4秒前
4秒前
lee发布了新的文献求助10
4秒前
Jasper应助李子采纳,获得10
5秒前
fusheng完成签到 ,获得积分10
6秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289499
求助须知:如何正确求助?哪些是违规求助? 4441106
关于积分的说明 13826460
捐赠科研通 4323436
什么是DOI,文献DOI怎么找? 2373207
邀请新用户注册赠送积分活动 1368606
关于科研通互助平台的介绍 1332493