亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Large-scale User Visits Understanding and Forecasting with Deep Spatial-Temporal Tensor Factorization Framework

计算机科学 可扩展性 机器学习 矩阵分解 人工智能 比例(比率) 深度学习 适应性 时间序列 数据挖掘 在线广告 互联网 数据科学 万维网 生物 数据库 物理 量子力学 特征向量 生态学
作者
Xiaoyang Ma,Lan Zhang,Lan Xu,Zhicheng Liu,Chen Ge,Zhili Xiao,Yang Wang,Zhengtao Wu
标识
DOI:10.1145/3292500.3330728
摘要

Understanding and forecasting user visits is of great importance for a variety of tasks, e.g., online advertising, which is one of the most profitable business models for Internet services. Publishers sell advertising spaces in advance with user visit volume and attributes guarantees. There are usually tens of thousands of attribute combinations in an online advertising system. The key problem is how to accurately forecast the number of user visits for each attribute combination. Many traditional work characterizing temporal trends of every single time series are quite inefficient for large-scale time series. Recently, a number of models based on deep learning or matrix factorization have been proposed for high-dimensional time series forecasting. However, most of them neglect correlations among attribute combinations, or are tailored for specific applications, resulting in poor adaptability for different business scenarios.Besides, sophisticated deep learning models usually cause high time and space complexity. There is still a lack of an efficient highly scalable and adaptable solution for accurate high-dimensional time series forecasting. To address this issue, in this work, we conduct a thorough analysis on large-scale user visits data and propose a novel deep spatial-temporal tensor factorization framework, which provides a general design for high-dimensional time series forecasting. We deployed the proposed framework in Tencent online guaranteed delivery advertising system, and extensively evaluated the effectiveness and efficiency of the framework in two different large-scale application scenarios. The results show that our framework outperforms existing methods in prediction accuracy. Meanwhile, it significantly reduces the parameter number and is resistant to incomplete data with up to 20% missing values.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wujiwuhui完成签到 ,获得积分10
刚刚
3秒前
鸡蛋黄发布了新的文献求助10
9秒前
完美世界应助眼睛大智宸采纳,获得10
14秒前
市政的艺术家完成签到,获得积分10
34秒前
Virtual应助科研通管家采纳,获得20
34秒前
JamesPei应助市政的艺术家采纳,获得20
45秒前
lod完成签到,获得积分10
51秒前
1分钟前
淡淡醉波wuliao完成签到 ,获得积分0
1分钟前
可可完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
熊啊发布了新的文献求助10
2分钟前
lj发布了新的文献求助10
2分钟前
Ava应助krajicek采纳,获得10
2分钟前
NexusExplorer应助熊啊采纳,获得10
2分钟前
lj完成签到,获得积分10
2分钟前
2分钟前
krajicek发布了新的文献求助10
2分钟前
排骨大王完成签到,获得积分10
2分钟前
2分钟前
2分钟前
灵巧灵松发布了新的文献求助10
2分钟前
3分钟前
Jiayi完成签到 ,获得积分10
3分钟前
3分钟前
熊啊发布了新的文献求助10
3分钟前
3分钟前
3分钟前
Hello应助梦想家采纳,获得10
4分钟前
bocky完成签到 ,获得积分10
4分钟前
滕皓轩完成签到 ,获得积分20
4分钟前
4分钟前
4分钟前
4分钟前
h0jian09完成签到,获得积分10
4分钟前
5分钟前
5分钟前
Akim应助krajicek采纳,获得30
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4568866
求助须知:如何正确求助?哪些是违规求助? 3991276
关于积分的说明 12355594
捐赠科研通 3663388
什么是DOI,文献DOI怎么找? 2018871
邀请新用户注册赠送积分活动 1053272
科研通“疑难数据库(出版商)”最低求助积分说明 940874