Large-scale User Visits Understanding and Forecasting with Deep Spatial-Temporal Tensor Factorization Framework

计算机科学 可扩展性 机器学习 矩阵分解 人工智能 比例(比率) 深度学习 适应性 时间序列 数据挖掘 在线广告 互联网 数据科学 万维网 生物 数据库 物理 量子力学 特征向量 生态学
作者
Xiaoyang Ma,Lan Zhang,Lan Xu,Zhicheng Liu,Chen Ge,Zhili Xiao,Yang Wang,Zhengtao Wu
标识
DOI:10.1145/3292500.3330728
摘要

Understanding and forecasting user visits is of great importance for a variety of tasks, e.g., online advertising, which is one of the most profitable business models for Internet services. Publishers sell advertising spaces in advance with user visit volume and attributes guarantees. There are usually tens of thousands of attribute combinations in an online advertising system. The key problem is how to accurately forecast the number of user visits for each attribute combination. Many traditional work characterizing temporal trends of every single time series are quite inefficient for large-scale time series. Recently, a number of models based on deep learning or matrix factorization have been proposed for high-dimensional time series forecasting. However, most of them neglect correlations among attribute combinations, or are tailored for specific applications, resulting in poor adaptability for different business scenarios.Besides, sophisticated deep learning models usually cause high time and space complexity. There is still a lack of an efficient highly scalable and adaptable solution for accurate high-dimensional time series forecasting. To address this issue, in this work, we conduct a thorough analysis on large-scale user visits data and propose a novel deep spatial-temporal tensor factorization framework, which provides a general design for high-dimensional time series forecasting. We deployed the proposed framework in Tencent online guaranteed delivery advertising system, and extensively evaluated the effectiveness and efficiency of the framework in two different large-scale application scenarios. The results show that our framework outperforms existing methods in prediction accuracy. Meanwhile, it significantly reduces the parameter number and is resistant to incomplete data with up to 20% missing values.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助Melody采纳,获得10
1秒前
2秒前
姗姗发布了新的文献求助10
3秒前
加油完成签到,获得积分10
3秒前
CZJ完成签到,获得积分10
4秒前
MRD发布了新的文献求助10
4秒前
4秒前
不爱吃米饭完成签到,获得积分10
4秒前
我要发sci完成签到,获得积分10
5秒前
5秒前
Lucifer完成签到 ,获得积分10
5秒前
结实的世倌完成签到,获得积分20
6秒前
冒着大风前行完成签到,获得积分20
6秒前
7秒前
慕青应助合适朋友采纳,获得10
7秒前
涵泽发布了新的文献求助10
7秒前
7秒前
QianQianONE发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
hulahula完成签到,获得积分10
11秒前
11秒前
dawei发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
无花果应助kepwake采纳,获得10
12秒前
12秒前
EvaHo完成签到,获得积分10
12秒前
13秒前
LEI发布了新的文献求助10
13秒前
汉堡包应助Yashyi采纳,获得10
14秒前
hohokuz发布了新的文献求助10
14秒前
子车茗应助PhDL1采纳,获得20
15秒前
顾矜应助橘涂采纳,获得10
15秒前
易安发布了新的文献求助10
15秒前
最落幕完成签到 ,获得积分10
15秒前
映城发布了新的文献求助50
16秒前
Daisy完成签到,获得积分10
16秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594565
求助须知:如何正确求助?哪些是违规求助? 4680238
关于积分的说明 14813737
捐赠科研通 4647610
什么是DOI,文献DOI怎么找? 2535063
邀请新用户注册赠送积分活动 1503074
关于科研通互助平台的介绍 1469521