Large-scale User Visits Understanding and Forecasting with Deep Spatial-Temporal Tensor Factorization Framework

计算机科学 可扩展性 机器学习 矩阵分解 人工智能 比例(比率) 深度学习 适应性 时间序列 数据挖掘 在线广告 互联网 数据科学 万维网 生物 数据库 物理 量子力学 特征向量 生态学
作者
Xiaoyang Ma,Lan Zhang,Lan Xu,Zhicheng Liu,Chen Ge,Zhili Xiao,Yang Wang,Zhengtao Wu
标识
DOI:10.1145/3292500.3330728
摘要

Understanding and forecasting user visits is of great importance for a variety of tasks, e.g., online advertising, which is one of the most profitable business models for Internet services. Publishers sell advertising spaces in advance with user visit volume and attributes guarantees. There are usually tens of thousands of attribute combinations in an online advertising system. The key problem is how to accurately forecast the number of user visits for each attribute combination. Many traditional work characterizing temporal trends of every single time series are quite inefficient for large-scale time series. Recently, a number of models based on deep learning or matrix factorization have been proposed for high-dimensional time series forecasting. However, most of them neglect correlations among attribute combinations, or are tailored for specific applications, resulting in poor adaptability for different business scenarios.Besides, sophisticated deep learning models usually cause high time and space complexity. There is still a lack of an efficient highly scalable and adaptable solution for accurate high-dimensional time series forecasting. To address this issue, in this work, we conduct a thorough analysis on large-scale user visits data and propose a novel deep spatial-temporal tensor factorization framework, which provides a general design for high-dimensional time series forecasting. We deployed the proposed framework in Tencent online guaranteed delivery advertising system, and extensively evaluated the effectiveness and efficiency of the framework in two different large-scale application scenarios. The results show that our framework outperforms existing methods in prediction accuracy. Meanwhile, it significantly reduces the parameter number and is resistant to incomplete data with up to 20% missing values.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
细腻的宫二完成签到,获得积分10
刚刚
Hh完成签到,获得积分10
刚刚
王宇杰完成签到,获得积分10
1秒前
1秒前
CPS完成签到,获得积分20
2秒前
2秒前
yunsww完成签到,获得积分10
3秒前
3秒前
B1n发布了新的文献求助10
3秒前
3秒前
大壮完成签到,获得积分10
4秒前
肉肉完成签到,获得积分10
4秒前
冷语完成签到,获得积分10
5秒前
5秒前
蜘蛛侦探完成签到,获得积分10
5秒前
5秒前
纳米纤维素完成签到,获得积分10
5秒前
虚拟莫茗完成签到,获得积分10
5秒前
健忘芷珊发布了新的文献求助10
6秒前
7秒前
淡然篮球发布了新的文献求助10
7秒前
花痴的慕蕊完成签到,获得积分10
7秒前
活力雁枫完成签到,获得积分10
8秒前
吃吃完成签到 ,获得积分10
8秒前
Orange应助mojito采纳,获得10
8秒前
外向路灯完成签到,获得积分10
8秒前
9秒前
兔子完成签到 ,获得积分10
9秒前
B1n完成签到,获得积分20
9秒前
ZL完成签到,获得积分10
9秒前
心灵美语兰完成签到 ,获得积分10
9秒前
小马甲应助lilili采纳,获得10
10秒前
SciGPT应助稳重的若雁采纳,获得10
10秒前
陈乔完成签到,获得积分10
11秒前
11秒前
MJJ发布了新的文献求助10
11秒前
忧虑的羊发布了新的文献求助10
12秒前
项听蓉完成签到,获得积分10
12秒前
戴好头盔搞科研完成签到,获得积分10
12秒前
13秒前
高分求助中
Evolution 10000
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
Die Gottesanbeterin: Mantis religiosa: 656 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158816
求助须知:如何正确求助?哪些是违规求助? 2810026
关于积分的说明 7885324
捐赠科研通 2468805
什么是DOI,文献DOI怎么找? 1314396
科研通“疑难数据库(出版商)”最低求助积分说明 630616
版权声明 602012