Unified structural motifs of the catalytically active state of Co(oxyhydr)oxides during the electrochemical oxygen evolution reaction

析氧 催化作用 电化学 氧化物 化学 活动站点 金属 循环伏安法 材料科学 氧化态 无机化学 物理化学 电极 有机化学
作者
Arno Bergmann,Travis E. Jones,Elías Martínez Moreno,Detre Teschner,Petko Chernev,Manuel Gliech,Tobias Reier,Holger Dau,Peter Strasser
出处
期刊:Nature Catalysis [Springer Nature]
卷期号:1 (9): 711-719 被引量:497
标识
DOI:10.1038/s41929-018-0141-2
摘要

Efficient catalysts for the anodic oxygen evolution reaction (OER) are critical for electrochemical H2 production. Their design requires structural knowledge of their catalytically active sites and state. Here, we track the atomic-scale structural evolution of well-defined CoOx(OH)y compounds into their catalytically active state during electrocatalytic operation through operando and surface-sensitive X-ray spectroscopy and surface voltammetry, supported by theoretical calculations. We find clear voltammetric evidence that electrochemically reducible near-surface Co3+–O sites play an organizing role for high OER activity. These sites invariably emerge independent of initial metal valency and coordination under catalytic OER conditions. Combining experiments and theory reveals the unified chemical structure motif as µ2-OH-bridged Co2+/3+ ion clusters formed on all three-dimensional cross-linked and layered CoOx(OH)y precursors and present in an oxidized form during the OER, as shown by operando X-ray spectroscopy. Together, the spectroscopic and electrochemical fingerprints offer a unified picture of our molecular understanding of the structure of catalytically active metal oxide OER sites. Knowledge of the active sites in catalysts—including the sites that form under working conditions—is vital for future design and development. Here, the authors track the atomic-scale changes in a series of well-defined cobalt-based oxide electrocatalysts, showing that the structurally distinct catalysts develop a similar structural motif as they transform into the catalytically active state.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Bingtao_Lian完成签到 ,获得积分10
1秒前
小布丁完成签到 ,获得积分10
1秒前
竹筏过海应助季生采纳,获得30
2秒前
3秒前
buno应助22采纳,获得10
4秒前
赘婿应助TT采纳,获得10
5秒前
5秒前
5秒前
6秒前
Jenny应助赖道之采纳,获得10
8秒前
依古比古完成签到 ,获得积分10
10秒前
汎影发布了新的文献求助10
10秒前
小二完成签到,获得积分10
10秒前
11秒前
13秒前
顾矜应助长情洙采纳,获得10
13秒前
monere发布了新的文献求助30
13秒前
Xiaoxiao应助汉关采纳,获得10
15秒前
15秒前
汎影完成签到,获得积分10
16秒前
17秒前
Chen发布了新的文献求助10
19秒前
WW完成签到,获得积分10
19秒前
21秒前
hyjcnhyj完成签到,获得积分10
22秒前
英姑应助赖道之采纳,获得10
23秒前
25秒前
研友_LXdbaL发布了新的文献求助30
25秒前
思源应助单薄新烟采纳,获得10
26秒前
26秒前
27秒前
Zz完成签到,获得积分10
27秒前
Prandtl完成签到 ,获得积分10
29秒前
30秒前
zfzf0422完成签到 ,获得积分10
31秒前
上官若男应助jackie采纳,获得10
31秒前
31秒前
我是站长才怪应助Benliu采纳,获得20
32秒前
32秒前
zh20130完成签到,获得积分10
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808