Adsorption and Activation of Methane on the (110) Surface of Rutile-type Metal Dioxides

金红石 吸附 甲烷 金属 材料科学 化学 无机化学 化学工程 物理化学 冶金 有机化学 工程类
作者
Yuta Tsuji,Kazunari Yoshizawa
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:122 (27): 15359-15381 被引量:94
标识
DOI:10.1021/acs.jpcc.8b03184
摘要

Methane strongly adsorbs on the (110) surface of IrO2, a rutile-type metal dioxide. Its C–H bond is facilely dissociated even below room temperature, as predicted in a few theoretical works and actually observed in a recent experimental study. Thence, three questions are posed and answered in this paper: First, why does methane adsorb on the IrO2 surface so strongly? Second, why is the surface so active for the C–H bond breaking reaction? Third, is there any other rutile-type metal dioxide that is more active than IrO2? A second-order perturbation theoretic approach is successfully applied to the analysis of the electronic structure of methane, which is found to be significantly distorted on the surface. Regarding the first point, it is clarified that an attractive orbital interaction between the surface Ir 5dz2 orbital and the distorted methane's highest occupied molecular orbital leads to the strong adsorption. As for the second point, the bond strength between the surface metal atom and the CH3 fragment generated after the C–H bond scission of methane is correlated well with the activation barrier. A substantial bonding interaction between CH3's nonbonding orbital and the dz2 orbital hints at the strong Ir–CH3 bond and hence high catalytic activity ensues. Last but not least, β-PtO2, a distorted rutile-type dioxide, is identified as a more active catalyst than IrO2. Here again, a perturbation theoretic line of explanation is found to be of tremendous help. This paper is at the intersection of theoretical, catalytic, inorganic, and physical chemistry. Also, it should serve as a model for the design and study of metal-oxide catalysts for the C–H bond activation of methane.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助99采纳,获得10
刚刚
爱听歌的寒香完成签到,获得积分10
刚刚
刚刚
迷路的诗槐完成签到,获得积分10
刚刚
1秒前
violetlishu发布了新的文献求助10
1秒前
小二郎应助hxdqhg采纳,获得10
1秒前
Joyceban完成签到,获得积分10
1秒前
ss13l完成签到,获得积分10
2秒前
顺利半梦完成签到,获得积分10
2秒前
浮光完成签到,获得积分10
2秒前
2秒前
暖暖发布了新的文献求助10
2秒前
博修发布了新的文献求助10
3秒前
蓝色的云完成签到,获得积分10
3秒前
复杂若男完成签到,获得积分20
3秒前
欲望被鬼应助外向如冬采纳,获得20
3秒前
充电宝应助长情墨镜采纳,获得10
4秒前
可爱的函函应助一二采纳,获得10
4秒前
4秒前
wbn1212发布了新的文献求助200
4秒前
cui完成签到,获得积分10
5秒前
5秒前
执着的灯泡完成签到,获得积分10
5秒前
施耐德发布了新的文献求助10
6秒前
7秒前
Robin发布了新的文献求助10
7秒前
ossantu发布了新的文献求助10
7秒前
Forever完成签到,获得积分10
7秒前
灵巧板栗完成签到,获得积分20
8秒前
小林太郎应助七霖采纳,获得20
8秒前
泥鳅面完成签到,获得积分10
8秒前
10秒前
卷大喵完成签到,获得积分10
10秒前
美茬子完成签到,获得积分10
10秒前
10秒前
mark完成签到,获得积分10
10秒前
lee完成签到,获得积分10
10秒前
Zac应助LUMOS采纳,获得10
10秒前
orixero应助暖暖采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556082
求助须知:如何正确求助?哪些是违规求助? 3131635
关于积分的说明 9392313
捐赠科研通 2831483
什么是DOI,文献DOI怎么找? 1556442
邀请新用户注册赠送积分活动 726605
科研通“疑难数据库(出版商)”最低求助积分说明 715912