Adsorption and Activation of Methane on the (110) Surface of Rutile-type Metal Dioxides

金红石 吸附 甲烷 金属 材料科学 化学 无机化学 化学工程 物理化学 冶金 有机化学 工程类
作者
Yuta Tsuji,Kazunari Yoshizawa
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:122 (27): 15359-15381 被引量:94
标识
DOI:10.1021/acs.jpcc.8b03184
摘要

Methane strongly adsorbs on the (110) surface of IrO2, a rutile-type metal dioxide. Its C–H bond is facilely dissociated even below room temperature, as predicted in a few theoretical works and actually observed in a recent experimental study. Thence, three questions are posed and answered in this paper: First, why does methane adsorb on the IrO2 surface so strongly? Second, why is the surface so active for the C–H bond breaking reaction? Third, is there any other rutile-type metal dioxide that is more active than IrO2? A second-order perturbation theoretic approach is successfully applied to the analysis of the electronic structure of methane, which is found to be significantly distorted on the surface. Regarding the first point, it is clarified that an attractive orbital interaction between the surface Ir 5dz2 orbital and the distorted methane's highest occupied molecular orbital leads to the strong adsorption. As for the second point, the bond strength between the surface metal atom and the CH3 fragment generated after the C–H bond scission of methane is correlated well with the activation barrier. A substantial bonding interaction between CH3's nonbonding orbital and the dz2 orbital hints at the strong Ir–CH3 bond and hence high catalytic activity ensues. Last but not least, β-PtO2, a distorted rutile-type dioxide, is identified as a more active catalyst than IrO2. Here again, a perturbation theoretic line of explanation is found to be of tremendous help. This paper is at the intersection of theoretical, catalytic, inorganic, and physical chemistry. Also, it should serve as a model for the design and study of metal-oxide catalysts for the C–H bond activation of methane.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
cctv18应助真好采纳,获得10
1秒前
四福祥发布了新的文献求助10
2秒前
3秒前
爆米花应助Xantareas采纳,获得10
3秒前
咿呀咿呀哟完成签到,获得积分10
5秒前
6秒前
Hello应助idiot采纳,获得10
6秒前
小迅123完成签到,获得积分10
7秒前
7秒前
超级不惜完成签到 ,获得积分10
8秒前
9秒前
9秒前
9秒前
BareBear应助DE2022采纳,获得10
10秒前
何哈哈发布了新的文献求助10
10秒前
天天快乐应助金籽采纳,获得10
10秒前
完美世界应助YWJ采纳,获得30
11秒前
aaaaaa发布了新的文献求助10
11秒前
12秒前
12秒前
努力完成签到,获得积分10
12秒前
12秒前
champtin完成签到 ,获得积分10
13秒前
真好完成签到,获得积分10
13秒前
不想长大完成签到,获得积分10
14秒前
14秒前
无理发布了新的文献求助10
14秒前
14秒前
15秒前
Akim应助MPC采纳,获得10
15秒前
Margaret完成签到 ,获得积分10
16秒前
ric发布了新的文献求助10
16秒前
柠萌发布了新的文献求助10
16秒前
小蘑菇应助老刘采纳,获得10
17秒前
Lucas应助木麻黄采纳,获得10
17秒前
玩儿完成签到,获得积分10
19秒前
20秒前
越遇发布了新的文献求助10
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 500
中介效应和调节效应模型进阶 400
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3444222
求助须知:如何正确求助?哪些是违规求助? 3040268
关于积分的说明 8980686
捐赠科研通 2728913
什么是DOI,文献DOI怎么找? 1496761
科研通“疑难数据库(出版商)”最低求助积分说明 691858
邀请新用户注册赠送积分活动 689393