Prioritizing Ground‐Motion Validation Metrics Using Semisupervised and Supervised Learning

孟菲斯 引用 图书馆学 偶像 下载 计算机科学 人工智能 万维网 工程类 地质学 古生物学 程序设计语言
作者
Naeem Khoshnevis,Ricardo Taborda
出处
期刊:Bulletin of the Seismological Society of America [Seismological Society]
卷期号:108 (4): 2248-2264 被引量:9
标识
DOI:10.1785/0120180056
摘要

Research Article| June 26, 2018 Prioritizing Ground‐Motion Validation Metrics Using Semisupervised and Supervised Learning Naeem Khoshnevis; Naeem Khoshnevis aCenter for Earthquake Research and Information, The University of Memphis, 3890 Central Avenue, Memphis, Tennessee 38152, nkhshnvs@memphis.edu Search for other works by this author on: GSW Google Scholar Ricardo Taborda Ricardo Taborda bDepartment of Civil Engineering,, and Center for Earthquake Research and Information, The University of Memphis, 3890 Central Avenue, Memphis, Tennessee 38152, ricardo.taborda@memphis.edu Search for other works by this author on: GSW Google Scholar Author and Article Information Naeem Khoshnevis aCenter for Earthquake Research and Information, The University of Memphis, 3890 Central Avenue, Memphis, Tennessee 38152, nkhshnvs@memphis.edu Ricardo Taborda bDepartment of Civil Engineering,, and Center for Earthquake Research and Information, The University of Memphis, 3890 Central Avenue, Memphis, Tennessee 38152, ricardo.taborda@memphis.edu Publisher: Seismological Society of America First Online: 26 Jun 2018 Online Issn: 1943-3573 Print Issn: 0037-1106 © Seismological Society of America Bulletin of the Seismological Society of America (2018) 108 (4): 2248–2264. https://doi.org/10.1785/0120180056 Article history First Online: 26 Jun 2018 Cite View This Citation Add to Citation Manager Share Icon Share Facebook Twitter LinkedIn MailTo Tools Icon Tools Get Permissions Search Site Citation Naeem Khoshnevis, Ricardo Taborda; Prioritizing Ground‐Motion Validation Metrics Using Semisupervised and Supervised Learning. Bulletin of the Seismological Society of America 2018;; 108 (4): 2248–2264. doi: https://doi.org/10.1785/0120180056 Download citation file: Ris (Zotero) Refmanager EasyBib Bookends Mendeley Papers EndNote RefWorks BibTex toolbar search Search Dropdown Menu toolbar search search input Search input auto suggest filter your search All ContentBy SocietyBulletin of the Seismological Society of America Search Advanced Search Abstract It has become common practice to validate ground‐motion simulations based on a variety of time and frequency metrics scaled to quantify the level of agreement between synthetics and data or other reference solutions. There is, however, no agreement about the importance or weight that it ought to be given to each metric. This leads to their selection often being subjective, either based on intended applications or personal preferences. As a consequence, it is difficult for simulators to identify what modeling improvements are needed, which would be easier if they could focus on a reduced number of metrics. We present an analysis that looks into 11 ground‐motion validation metrics using semisupervised and supervised machine learning techniques. These techniques help label and classify goodness‐of‐fit results with the objective of prioritizing and narrowing the choice of these metrics. In particular, we use a validation dataset of a series of physics‐based ground‐motion simulations done for the 2008 Mw 5.4 Chino Hills, California, earthquake. We study the relationships that exist between 11 metrics and carry out a process where these metrics are understood as part of a multidimensional space. We use a constrained k‐means method and conduct a subspace clustering analysis to address the implicit high‐dimensional effects. This allows us to label the data in our dataset into four validation categories (poor, fair, good, and excellent) following previous studies. We then develop a family of decision trees using the C5.0 algorithm, from which we select a few trees that help narrow the number of metrics leading to a validation prediction into the four referenced categories. These decision trees can be understood as rapid predictors of the quality of a simulation, or as data‐informed classifiers that can help prioritize validation metrics. Our analysis, although limited to the particular dataset used here, indicates that among the 11 metrics considered, the acceleration response spectra and total energy of velocity are the most dominant ones, followed by the peak ground response in terms of acceleration and velocity. You do not have access to this content, please speak to your institutional administrator if you feel you should have access.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
pinging应助566采纳,获得10
刚刚
乾明少侠完成签到 ,获得积分10
1秒前
1秒前
开心重要完成签到,获得积分10
2秒前
云魂完成签到,获得积分10
2秒前
hxy808完成签到,获得积分10
2秒前
小林太郎应助Young采纳,获得20
2秒前
3秒前
Helical发布了新的文献求助30
3秒前
风趣的天真完成签到,获得积分10
3秒前
虾仁发布了新的文献求助10
3秒前
搜集达人应助gww采纳,获得10
3秒前
SciGPT应助小橙子采纳,获得30
3秒前
跨材料完成签到,获得积分10
4秒前
WxChen发布了新的文献求助10
5秒前
祝顺遂完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
tianle完成签到,获得积分20
6秒前
Seven完成签到,获得积分10
7秒前
7秒前
7秒前
贤惠的迎夏完成签到,获得积分10
8秒前
Hello应助MARS采纳,获得10
8秒前
十里故清欢完成签到,获得积分10
8秒前
虾仁完成签到,获得积分10
8秒前
9秒前
lilac应助啦啦啦采纳,获得10
9秒前
gy关闭了gy文献求助
9秒前
MADKAI发布了新的文献求助10
9秒前
清秀的砖头完成签到,获得积分10
9秒前
小马甲应助等待的乐儿采纳,获得10
9秒前
CodeCraft应助萌萌采纳,获得10
10秒前
10秒前
10秒前
sv发布了新的文献求助10
10秒前
LIU发布了新的文献求助10
10秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759