Prioritizing Ground‐Motion Validation Metrics Using Semisupervised and Supervised Learning

孟菲斯 引用 图书馆学 偶像 下载 计算机科学 人工智能 万维网 工程类 地质学 古生物学 程序设计语言
作者
Naeem Khoshnevis,Ricardo Taborda
出处
期刊:Bulletin of the Seismological Society of America [Seismological Society of America]
卷期号:108 (4): 2248-2264 被引量:9
标识
DOI:10.1785/0120180056
摘要

Research Article| June 26, 2018 Prioritizing Ground‐Motion Validation Metrics Using Semisupervised and Supervised Learning Naeem Khoshnevis; Naeem Khoshnevis aCenter for Earthquake Research and Information, The University of Memphis, 3890 Central Avenue, Memphis, Tennessee 38152, nkhshnvs@memphis.edu Search for other works by this author on: GSW Google Scholar Ricardo Taborda Ricardo Taborda bDepartment of Civil Engineering,, and Center for Earthquake Research and Information, The University of Memphis, 3890 Central Avenue, Memphis, Tennessee 38152, ricardo.taborda@memphis.edu Search for other works by this author on: GSW Google Scholar Author and Article Information Naeem Khoshnevis aCenter for Earthquake Research and Information, The University of Memphis, 3890 Central Avenue, Memphis, Tennessee 38152, nkhshnvs@memphis.edu Ricardo Taborda bDepartment of Civil Engineering,, and Center for Earthquake Research and Information, The University of Memphis, 3890 Central Avenue, Memphis, Tennessee 38152, ricardo.taborda@memphis.edu Publisher: Seismological Society of America First Online: 26 Jun 2018 Online Issn: 1943-3573 Print Issn: 0037-1106 © Seismological Society of America Bulletin of the Seismological Society of America (2018) 108 (4): 2248–2264. https://doi.org/10.1785/0120180056 Article history First Online: 26 Jun 2018 Cite View This Citation Add to Citation Manager Share Icon Share Facebook Twitter LinkedIn MailTo Tools Icon Tools Get Permissions Search Site Citation Naeem Khoshnevis, Ricardo Taborda; Prioritizing Ground‐Motion Validation Metrics Using Semisupervised and Supervised Learning. Bulletin of the Seismological Society of America 2018;; 108 (4): 2248–2264. doi: https://doi.org/10.1785/0120180056 Download citation file: Ris (Zotero) Refmanager EasyBib Bookends Mendeley Papers EndNote RefWorks BibTex toolbar search Search Dropdown Menu toolbar search search input Search input auto suggest filter your search All ContentBy SocietyBulletin of the Seismological Society of America Search Advanced Search Abstract It has become common practice to validate ground‐motion simulations based on a variety of time and frequency metrics scaled to quantify the level of agreement between synthetics and data or other reference solutions. There is, however, no agreement about the importance or weight that it ought to be given to each metric. This leads to their selection often being subjective, either based on intended applications or personal preferences. As a consequence, it is difficult for simulators to identify what modeling improvements are needed, which would be easier if they could focus on a reduced number of metrics. We present an analysis that looks into 11 ground‐motion validation metrics using semisupervised and supervised machine learning techniques. These techniques help label and classify goodness‐of‐fit results with the objective of prioritizing and narrowing the choice of these metrics. In particular, we use a validation dataset of a series of physics‐based ground‐motion simulations done for the 2008 Mw 5.4 Chino Hills, California, earthquake. We study the relationships that exist between 11 metrics and carry out a process where these metrics are understood as part of a multidimensional space. We use a constrained k‐means method and conduct a subspace clustering analysis to address the implicit high‐dimensional effects. This allows us to label the data in our dataset into four validation categories (poor, fair, good, and excellent) following previous studies. We then develop a family of decision trees using the C5.0 algorithm, from which we select a few trees that help narrow the number of metrics leading to a validation prediction into the four referenced categories. These decision trees can be understood as rapid predictors of the quality of a simulation, or as data‐informed classifiers that can help prioritize validation metrics. Our analysis, although limited to the particular dataset used here, indicates that among the 11 metrics considered, the acceleration response spectra and total energy of velocity are the most dominant ones, followed by the peak ground response in terms of acceleration and velocity. You do not have access to this content, please speak to your institutional administrator if you feel you should have access.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
赘婿应助帅气的Bond采纳,获得10
1秒前
RC_Wang发布了新的文献求助10
1秒前
思源应助单纯的幻竹采纳,获得10
1秒前
1秒前
123发布了新的文献求助10
1秒前
2秒前
Desheng发布了新的文献求助10
2秒前
阳6完成签到 ,获得积分10
2秒前
有人喜欢蓝完成签到,获得积分10
2秒前
ding应助rss采纳,获得10
2秒前
Orange应助gy采纳,获得10
3秒前
3秒前
600完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助150
3秒前
小穆发布了新的文献求助10
3秒前
跳跃的翼应助果实采纳,获得10
3秒前
跳跃的翼应助果实采纳,获得10
3秒前
跳跃的翼应助果实采纳,获得10
3秒前
orixero应助小为采纳,获得10
4秒前
华仔应助果实采纳,获得10
4秒前
猫尔儿发布了新的文献求助200
4秒前
罗小黑完成签到,获得积分20
5秒前
5秒前
5秒前
蟹黄包TT关注了科研通微信公众号
5秒前
思源应助瘦瘦寄风采纳,获得10
5秒前
6秒前
6秒前
7秒前
7秒前
Lucas应助vip668采纳,获得10
8秒前
qingrao发布了新的文献求助10
8秒前
8秒前
浮游应助小羊的大脸采纳,获得10
8秒前
8秒前
9秒前
张炎镕发布了新的文献求助10
9秒前
科研通AI5应助Rufina0720采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Thomas Hobbes' Mechanical Conception of Nature 500
One Health Case Studies: Practical Applications of the Transdisciplinary Approach 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5111405
求助须知:如何正确求助?哪些是违规求助? 4319643
关于积分的说明 13458882
捐赠科研通 4150251
什么是DOI,文献DOI怎么找? 2274053
邀请新用户注册赠送积分活动 1276096
关于科研通互助平台的介绍 1214317