Prioritizing Ground‐Motion Validation Metrics Using Semisupervised and Supervised Learning

孟菲斯 引用 图书馆学 偶像 下载 计算机科学 人工智能 万维网 工程类 地质学 古生物学 程序设计语言
作者
Naeem Khoshnevis,Ricardo Taborda
出处
期刊:Bulletin of the Seismological Society of America [Seismological Society of America]
卷期号:108 (4): 2248-2264 被引量:9
标识
DOI:10.1785/0120180056
摘要

Research Article| June 26, 2018 Prioritizing Ground‐Motion Validation Metrics Using Semisupervised and Supervised Learning Naeem Khoshnevis; Naeem Khoshnevis aCenter for Earthquake Research and Information, The University of Memphis, 3890 Central Avenue, Memphis, Tennessee 38152, nkhshnvs@memphis.edu Search for other works by this author on: GSW Google Scholar Ricardo Taborda Ricardo Taborda bDepartment of Civil Engineering,, and Center for Earthquake Research and Information, The University of Memphis, 3890 Central Avenue, Memphis, Tennessee 38152, ricardo.taborda@memphis.edu Search for other works by this author on: GSW Google Scholar Author and Article Information Naeem Khoshnevis aCenter for Earthquake Research and Information, The University of Memphis, 3890 Central Avenue, Memphis, Tennessee 38152, nkhshnvs@memphis.edu Ricardo Taborda bDepartment of Civil Engineering,, and Center for Earthquake Research and Information, The University of Memphis, 3890 Central Avenue, Memphis, Tennessee 38152, ricardo.taborda@memphis.edu Publisher: Seismological Society of America First Online: 26 Jun 2018 Online Issn: 1943-3573 Print Issn: 0037-1106 © Seismological Society of America Bulletin of the Seismological Society of America (2018) 108 (4): 2248–2264. https://doi.org/10.1785/0120180056 Article history First Online: 26 Jun 2018 Cite View This Citation Add to Citation Manager Share Icon Share Facebook Twitter LinkedIn MailTo Tools Icon Tools Get Permissions Search Site Citation Naeem Khoshnevis, Ricardo Taborda; Prioritizing Ground‐Motion Validation Metrics Using Semisupervised and Supervised Learning. Bulletin of the Seismological Society of America 2018;; 108 (4): 2248–2264. doi: https://doi.org/10.1785/0120180056 Download citation file: Ris (Zotero) Refmanager EasyBib Bookends Mendeley Papers EndNote RefWorks BibTex toolbar search Search Dropdown Menu toolbar search search input Search input auto suggest filter your search All ContentBy SocietyBulletin of the Seismological Society of America Search Advanced Search Abstract It has become common practice to validate ground‐motion simulations based on a variety of time and frequency metrics scaled to quantify the level of agreement between synthetics and data or other reference solutions. There is, however, no agreement about the importance or weight that it ought to be given to each metric. This leads to their selection often being subjective, either based on intended applications or personal preferences. As a consequence, it is difficult for simulators to identify what modeling improvements are needed, which would be easier if they could focus on a reduced number of metrics. We present an analysis that looks into 11 ground‐motion validation metrics using semisupervised and supervised machine learning techniques. These techniques help label and classify goodness‐of‐fit results with the objective of prioritizing and narrowing the choice of these metrics. In particular, we use a validation dataset of a series of physics‐based ground‐motion simulations done for the 2008 Mw 5.4 Chino Hills, California, earthquake. We study the relationships that exist between 11 metrics and carry out a process where these metrics are understood as part of a multidimensional space. We use a constrained k‐means method and conduct a subspace clustering analysis to address the implicit high‐dimensional effects. This allows us to label the data in our dataset into four validation categories (poor, fair, good, and excellent) following previous studies. We then develop a family of decision trees using the C5.0 algorithm, from which we select a few trees that help narrow the number of metrics leading to a validation prediction into the four referenced categories. These decision trees can be understood as rapid predictors of the quality of a simulation, or as data‐informed classifiers that can help prioritize validation metrics. Our analysis, although limited to the particular dataset used here, indicates that among the 11 metrics considered, the acceleration response spectra and total energy of velocity are the most dominant ones, followed by the peak ground response in terms of acceleration and velocity. You do not have access to this content, please speak to your institutional administrator if you feel you should have access.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄的宝发布了新的文献求助10
刚刚
大胆的向卉完成签到,获得积分10
1秒前
zuducyow完成签到,获得积分10
1秒前
亦木完成签到,获得积分10
2秒前
2秒前
dsd完成签到,获得积分10
3秒前
嘻嘻哈哈完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
Wongyeah发布了新的文献求助20
6秒前
7秒前
元馨完成签到,获得积分10
7秒前
7秒前
汉堡包应助yzWang采纳,获得10
9秒前
10秒前
不吃香菜应助文件撤销了驳回
10秒前
11秒前
FAYE发布了新的文献求助10
11秒前
loong完成签到,获得积分10
11秒前
贪狼先森发布了新的文献求助10
12秒前
yangzhang发布了新的文献求助10
12秒前
12秒前
zhengzehong发布了新的文献求助10
13秒前
14秒前
15秒前
风中道罡发布了新的文献求助10
16秒前
16秒前
17秒前
Eclipseee完成签到,获得积分20
18秒前
18秒前
AiX-zzzzz发布了新的文献求助10
18秒前
阳光的紊应助kj采纳,获得20
19秒前
核桃应助超男采纳,获得10
19秒前
20秒前
20秒前
21秒前
21秒前
FAYE完成签到,获得积分10
22秒前
谢海亮完成签到,获得积分10
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956172
求助须知:如何正确求助?哪些是违规求助? 3502400
关于积分的说明 11107420
捐赠科研通 3232954
什么是DOI,文献DOI怎么找? 1787093
邀请新用户注册赠送积分活动 870482
科研通“疑难数据库(出版商)”最低求助积分说明 802019