亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prioritizing Ground‐Motion Validation Metrics Using Semisupervised and Supervised Learning

孟菲斯 引用 图书馆学 偶像 下载 计算机科学 人工智能 万维网 工程类 地质学 古生物学 程序设计语言
作者
Naeem Khoshnevis,Ricardo Taborda
出处
期刊:Bulletin of the Seismological Society of America [Seismological Society]
卷期号:108 (4): 2248-2264 被引量:9
标识
DOI:10.1785/0120180056
摘要

Research Article| June 26, 2018 Prioritizing Ground‐Motion Validation Metrics Using Semisupervised and Supervised Learning Naeem Khoshnevis; Naeem Khoshnevis aCenter for Earthquake Research and Information, The University of Memphis, 3890 Central Avenue, Memphis, Tennessee 38152, nkhshnvs@memphis.edu Search for other works by this author on: GSW Google Scholar Ricardo Taborda Ricardo Taborda bDepartment of Civil Engineering,, and Center for Earthquake Research and Information, The University of Memphis, 3890 Central Avenue, Memphis, Tennessee 38152, ricardo.taborda@memphis.edu Search for other works by this author on: GSW Google Scholar Author and Article Information Naeem Khoshnevis aCenter for Earthquake Research and Information, The University of Memphis, 3890 Central Avenue, Memphis, Tennessee 38152, nkhshnvs@memphis.edu Ricardo Taborda bDepartment of Civil Engineering,, and Center for Earthquake Research and Information, The University of Memphis, 3890 Central Avenue, Memphis, Tennessee 38152, ricardo.taborda@memphis.edu Publisher: Seismological Society of America First Online: 26 Jun 2018 Online Issn: 1943-3573 Print Issn: 0037-1106 © Seismological Society of America Bulletin of the Seismological Society of America (2018) 108 (4): 2248–2264. https://doi.org/10.1785/0120180056 Article history First Online: 26 Jun 2018 Cite View This Citation Add to Citation Manager Share Icon Share Facebook Twitter LinkedIn MailTo Tools Icon Tools Get Permissions Search Site Citation Naeem Khoshnevis, Ricardo Taborda; Prioritizing Ground‐Motion Validation Metrics Using Semisupervised and Supervised Learning. Bulletin of the Seismological Society of America 2018;; 108 (4): 2248–2264. doi: https://doi.org/10.1785/0120180056 Download citation file: Ris (Zotero) Refmanager EasyBib Bookends Mendeley Papers EndNote RefWorks BibTex toolbar search Search Dropdown Menu toolbar search search input Search input auto suggest filter your search All ContentBy SocietyBulletin of the Seismological Society of America Search Advanced Search Abstract It has become common practice to validate ground‐motion simulations based on a variety of time and frequency metrics scaled to quantify the level of agreement between synthetics and data or other reference solutions. There is, however, no agreement about the importance or weight that it ought to be given to each metric. This leads to their selection often being subjective, either based on intended applications or personal preferences. As a consequence, it is difficult for simulators to identify what modeling improvements are needed, which would be easier if they could focus on a reduced number of metrics. We present an analysis that looks into 11 ground‐motion validation metrics using semisupervised and supervised machine learning techniques. These techniques help label and classify goodness‐of‐fit results with the objective of prioritizing and narrowing the choice of these metrics. In particular, we use a validation dataset of a series of physics‐based ground‐motion simulations done for the 2008 Mw 5.4 Chino Hills, California, earthquake. We study the relationships that exist between 11 metrics and carry out a process where these metrics are understood as part of a multidimensional space. We use a constrained k‐means method and conduct a subspace clustering analysis to address the implicit high‐dimensional effects. This allows us to label the data in our dataset into four validation categories (poor, fair, good, and excellent) following previous studies. We then develop a family of decision trees using the C5.0 algorithm, from which we select a few trees that help narrow the number of metrics leading to a validation prediction into the four referenced categories. These decision trees can be understood as rapid predictors of the quality of a simulation, or as data‐informed classifiers that can help prioritize validation metrics. Our analysis, although limited to the particular dataset used here, indicates that among the 11 metrics considered, the acceleration response spectra and total energy of velocity are the most dominant ones, followed by the peak ground response in terms of acceleration and velocity. You do not have access to this content, please speak to your institutional administrator if you feel you should have access.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wny发布了新的文献求助10
7秒前
上官若男应助科研通管家采纳,获得10
11秒前
大模型应助科研通管家采纳,获得10
11秒前
Polymer72应助revolver采纳,获得10
20秒前
胖小羊完成签到 ,获得积分10
21秒前
39秒前
一味地丶逞强完成签到,获得积分10
1分钟前
1分钟前
1分钟前
wny发布了新的文献求助100
1分钟前
1分钟前
2分钟前
123456完成签到,获得积分0
2分钟前
隐形曼青应助科研通管家采纳,获得10
2分钟前
2分钟前
wny发布了新的文献求助10
2分钟前
汉堡包应助wny采纳,获得10
2分钟前
2分钟前
2分钟前
Jasper应助梨花弦外雨采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
zsmj23完成签到 ,获得积分0
4分钟前
4分钟前
梨花弦外雨完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
5分钟前
wny发布了新的文献求助10
5分钟前
故意的睫毛膏完成签到 ,获得积分10
5分钟前
5分钟前
聪明的云完成签到 ,获得积分10
5分钟前
5分钟前
wny发布了新的文献求助10
6分钟前
6分钟前
oleskarabach发布了新的文献求助10
6分钟前
梅赛德斯奔驰完成签到,获得积分10
6分钟前
高分求助中
Natural History of Mantodea 螳螂的自然史 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3344197
求助须知:如何正确求助?哪些是违规求助? 2971172
关于积分的说明 8646887
捐赠科研通 2651434
什么是DOI,文献DOI怎么找? 1451779
科研通“疑难数据库(出版商)”最低求助积分说明 672282
邀请新用户注册赠送积分活动 661790