生物
联营
转化式学习
表观遗传学
计算生物学
仿形(计算机编程)
数据集成
单细胞分析
数据类型
数据科学
单细胞测序
RNA序列
细胞
计算机科学
基因表达
基因
遗传学
转录组
人工智能
数据挖掘
表型
操作系统
程序设计语言
心理学
教育学
外显子组测序
作者
Tim Stuart,Rahul Satija
标识
DOI:10.1038/s41576-019-0093-7
摘要
The recent maturation of single-cell RNA sequencing (scRNA-seq) technologies has coincided with transformative new methods to profile genetic, epigenetic, spatial, proteomic and lineage information in individual cells. This provides unique opportunities, alongside computational challenges, for integrative methods that can jointly learn across multiple types of data. Integrated analysis can discover relationships across cellular modalities, learn a holistic representation of the cell state, and enable the pooling of data sets produced across individuals and technologies. In this Review, we discuss the recent advances in the collection and integration of different data types at single-cell resolution with a focus on the integration of gene expression data with other types of single-cell measurement.
科研通智能强力驱动
Strongly Powered by AbleSci AI