阴极
分离器(采油)
储能
阳极
电解质
电池(电)
快离子导体
能量密度
钠
陶瓷
铝
化学
材料科学
化学工程
无机化学
冶金
工程物理
电极
热力学
物理化学
工程类
功率(物理)
物理
作者
Leigang Xue,Sen Xin,John B. Goodenough,C. A. Angell
出处
期刊:ACS energy letters
[American Chemical Society]
日期:2017-04-25
卷期号:2 (7): 1534-1538
被引量:21
标识
DOI:10.1021/acsenergylett.7b00234
摘要
Aluminum has long been regarded as a promising anode for energy storage because of its high energy density and low cost, but its application is hindered by the inability of cathodes to provide reversible Al3+ insertion. In contrast, we show how the use of Al as cathode enables a rechargeable high-energy battery. The battery comprises a molten sodium anolyte and a molten NaAl2Cl7 catholyte, separated by a NaSICON solid Na+ electrolyte. It is operated at 200 °C to overcome the ceramic separator kinetics and to keep sodium and NaAl2Cl7 in the molten state. Because of the simple composition and trivalence of Al, the sodium anolyte and NaAl2Cl7 catholyte together show a high energy density of 366 Wh kg–1, although its voltage is only about 1.55 V and only 60% of the capacity can be realized. The high energy density, low-cost, and internal safety make this new cell chemistry applicable to the large-scale energy storage market.
科研通智能强力驱动
Strongly Powered by AbleSci AI