2D transition metal dichalcogenides

材料科学 自旋电子学 过渡金属 石墨烯 数码产品 应变工程 带隙 半导体 纳米技术 电子迁移率 凝聚态物理 光电子学 化学 物理 铁磁性 催化作用 物理化学 生物化学
作者
Sajedeh Manzeli,Dmitry Ovchinnikov,Diego Pasquier,Oleg V. Yazyev,András Kis
出处
期刊:Nature Reviews Materials [Springer Nature]
卷期号:2 (8) 被引量:4435
标识
DOI:10.1038/natrevmats.2017.33
摘要

Graphene is very popular because of its many fascinating properties, but its lack of an electronic bandgap has stimulated the search for 2D materials with semiconducting character. Transition metal dichalcogenides (TMDCs), which are semiconductors of the type MX2, where M is a transition metal atom (such as Mo or W) and X is a chalcogen atom (such as S, Se or Te), provide a promising alternative. Because of its robustness, MoS2 is the most studied material in this family. TMDCs exhibit a unique combination of atomic-scale thickness, direct bandgap, strong spin–orbit coupling and favourable electronic and mechanical properties, which make them interesting for fundamental studies and for applications in high-end electronics, spintronics, optoelectronics, energy harvesting, flexible electronics, DNA sequencing and personalized medicine. In this Review, the methods used to synthesize TMDCs are examined and their properties are discussed, with particular attention to their charge density wave, superconductive and topological phases. The use of TMCDs in nanoelectronic devices is also explored, along with strategies to improve charge carrier mobility, high frequency operation and the use of strain engineering to tailor their properties. Two-dimensional transition metal dichalcogenides (TMDCs) exhibit attractive electronic and mechanical properties. In this Review, the charge density wave, superconductive and topological phases of TMCDs are discussed, along with their synthesis and applications in devices with enhanced mobility and with the use of strain engineering to improve their properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ikin发布了新的文献求助10
1秒前
1秒前
科研通AI2S应助fff采纳,获得10
2秒前
2秒前
触摸涨停板完成签到,获得积分0
4秒前
4秒前
王浩宇发布了新的文献求助10
5秒前
7秒前
袁琴发布了新的文献求助10
7秒前
9秒前
10秒前
FP完成签到 ,获得积分10
11秒前
畅跑daily发布了新的文献求助10
12秒前
14秒前
袁琴完成签到,获得积分20
15秒前
qweer发布了新的文献求助10
16秒前
wu发布了新的文献求助200
17秒前
生动的小猫咪完成签到,获得积分20
17秒前
LeeSunE完成签到,获得积分20
18秒前
打打应助浮流少年采纳,获得10
18秒前
19秒前
深情海亦完成签到,获得积分20
19秒前
19秒前
桐桐应助盖慕斯采纳,获得10
19秒前
大模型应助王浩宇采纳,获得10
20秒前
liu11发布了新的文献求助10
20秒前
21秒前
谁要学习啊完成签到,获得积分20
22秒前
Akim应助活泼忆丹采纳,获得10
23秒前
Singularity应助个别采纳,获得20
23秒前
qweer完成签到,获得积分20
23秒前
tong发布了新的文献求助10
24秒前
雪白易烟完成签到,获得积分10
24秒前
24秒前
26秒前
26秒前
ding应助hzz采纳,获得10
26秒前
哈哈哈发布了新的文献求助10
26秒前
27秒前
29秒前
高分求助中
Sustainability in Tides Chemistry 2800
Shape Determination of Large Sedimental Rock Fragments 2000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3132974
求助须知:如何正确求助?哪些是违规求助? 2784219
关于积分的说明 7765186
捐赠科研通 2439347
什么是DOI,文献DOI怎么找? 1296754
科研通“疑难数据库(出版商)”最低求助积分说明 624678
版权声明 600771