降噪
数学
顶点(图论)
算法
噪音(视频)
图像去噪
双边滤波器
中值滤波器
人工智能
模式识别(心理学)
组合数学
图像(数学)
计算机科学
图像处理
图形
作者
Xuequan Lu,Wenzhi Chen,Scott Schaefer
标识
DOI:10.1016/j.cagd.2017.02.011
摘要
We propose a robust and effective mesh denoising approach consisting of three steps: vertex pre-filtering, L1-median normal filtering, and vertex updating. Given an input noisy mesh model, our method generates a high quality model that preserves geometric features. Our approach is more robust than state of the art approaches when denoising models with different levels of noise and can handle models with irregular surface sampling.
科研通智能强力驱动
Strongly Powered by AbleSci AI