亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Foxo3-Mediated Redox Regulation Is Required for DNA Damage Response in Hematopoietic Stem Cells.

FOXO3公司 DNA损伤 生物 干细胞 细胞生物学 造血 造血干细胞 分子生物学 DNA修复 细胞周期 组蛋白 细胞 DNA 磷酸化 遗传学 蛋白激酶B
作者
Carolina L. Bigarella,Pauline Rimmelé,Brigitte Izac,Valentina d’Escamard,Saghi Ghaffari
出处
期刊:Blood [American Society of Hematology]
卷期号:120 (21): 2295-2295
标识
DOI:10.1182/blood.v120.21.2295.2295
摘要

Abstract Abstract 2295 Stringent regulation of redox status is critical to the control of hematopoietic stem cell (HSC) quiescence and to the maintenance of HSC pool. However mechanisms by which oxidative stress controls HSC quiescence versus cycling remain unknown. Foxo3 transcription factor is required for the regulation of HSC quiescence and for the maintenance of hematopoietic and leukemic stem cell pool. Redox regulation is key to the Foxo3 control of HSC pool. ROS accumulation in Foxo3 null HSC mediates in vivo activation of p53, and increased p21 expression leading to an arrest in the G2/M phase of cell cycle associated with loss of quiescence. We hypothesized that ROS may regulate HSC quiescence versus cycling via control of DNA damage repair program. To address this question, we examined whether Foxo3 is involved in DNA damage response of HSC. We first evaluated by immunostaining phosphorylation of histone H2AX variant (γH2AX), a hallmark sensor of DNA strand break, in LSK (Lin−Sca-1+c-Kit+) cells freshly isolated from Foxo3−/− bone marrow. We found the number of cells with nuclear γH2AX foci significantly increased in Foxo3−/− LSK cells (n=100; >5 foci/nuclei) in comparison with wild type (WT)-LSK. We subsequently confirmed and quantified these data by flow cytometry analysis of γH2AX. Together these analyses showed that loss of Foxo3 leads to increased γH2AX levels in LSK cells at the steady state. We next evaluated the presence of DNA breaks, by submitting Foxo3−/− versus WT LSK FACS-sorted cells to single-cell gel electrophoresis (Comet Assay). These investigations confirmed that LSK cells from Foxo3−/− mice accumulate DNA breaks at the steady state, as the percentage of comet shape cells (4 fold) and comet length (3 fold) were all increased in Foxo3 mutant LSK. We then asked whether the increased ROS accumulation had any direct role in damaging DNA in Foxo3−/− LSK. Using a fluorescent probe specific for the most common oxidative DNA damage lesion, the 8-hydroxyguanine base (8-OxoG), we further showed that Foxo3−/− LSK cells exhibit oxidative DNA damage. To further investigate the potential function of ROS in the control of HSC DNA damage response, we treated Foxo3−/− and WT mice for 14 days with the ROS scavenger N-acetyl-cysteine (NAC; 100 mg/Kg/day) in vivo. NAC treatment reduced by four fold γH2AX in Foxo3−/− LSK cells to levels similar to that in WT-LSK cells. Similarly, comet assay analysis of FACS-sorted LSK cells from NAC-treated WT and Foxo3−/− mice showed a two fold reduction of DNA breaks. These results suggest that increase in ROS damage DNA and triggers DNA damage response in Foxo3−/− LSK cells at the steady state. Additionally, expression of a number of genes involved in DNA damage repair including Xrcc5 (Ku80) and Xrcc6 (Ku70) was highly downregulated in both long-term-HSC (LT-HSC, LSK-CD150+CD48−) and LSK populations as evidenced by Q-RT-PCR on the Fluidigm™ microfluidics array technology. Together these results strongly suggest that Foxo3-mediated redox regulation is required for protection of DNA from accumulating damage at the steady state in HSC. We further investigated whether ROS-mediated activation of p53 in Foxo3 null HSCs limits the extent of accumulation of DNA damage in HSC. To address this question we crossed p53+/−Foxo3+/− double heterozygous animals to generate p53-Foxo3 double knockout mice. Loss of p53 in Foxo3−/− mice led to significant rise in lymphocyte counts and decrease in neutrophil counts in comparison with Foxo3−/−, indicating a potential shift in lineage determination from HSC. To our surprise, loss of one allele of p53 in Foxo3-null mice significantly reduced gH2AX staining and DNA breaks, as analyzed respectively by flow cytometry and comet assay of sorted LSK cells. While the rescue of DNA damage in Foxo3−/− HSCs as result of loss of p53 was unexpected it is not clear whether it is related to the impact on the fate of HSC. The clarification of these questions in future studies will be important for understanding mechanisms that control the emergence of leukemic stem cells. Together these studies suggest that Foxo3 guards DNA from damage in HSC at the steady state. In addition they indicate an important function for ROS modulation in the in vivo regulation of DNA damage response in HSC. Altogether understanding mechanisms that control ROS modulation of DNA damage response are likely to advance our understanding of the regulation of normal hematopoietic and leukemic stem cell quiescence. Disclosures: No relevant conflicts of interest to declare.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
YVO4完成签到 ,获得积分10
23秒前
33秒前
37秒前
42秒前
wanci应助好文章快快来采纳,获得10
56秒前
星辰大海应助铭铭采纳,获得10
1分钟前
1分钟前
Fluoxtine发布了新的文献求助10
1分钟前
lyw发布了新的文献求助10
1分钟前
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
铭铭发布了新的文献求助10
1分钟前
herococa完成签到,获得积分0
1分钟前
是谁还没睡完成签到 ,获得积分10
2分钟前
Fluoxtine发布了新的文献求助10
2分钟前
学术交流高完成签到 ,获得积分10
2分钟前
凡舍完成签到 ,获得积分10
2分钟前
搜集达人应助dawn采纳,获得10
2分钟前
2分钟前
dawn完成签到,获得积分20
3分钟前
dawn发布了新的文献求助10
3分钟前
3分钟前
汉堡包应助Fluoxtine采纳,获得10
3分钟前
xixi发布了新的文献求助10
3分钟前
丘比特应助科研通管家采纳,获得10
3分钟前
FashionBoy应助科研通管家采纳,获得10
3分钟前
汉堡包应助科研通管家采纳,获得10
3分钟前
慕青应助科研通管家采纳,获得10
3分钟前
kuoping完成签到,获得积分0
3分钟前
3分钟前
机灵自中完成签到,获得积分10
3分钟前
Stellarshi517发布了新的文献求助20
3分钟前
3分钟前
科研通AI6.1应助xixi采纳,获得10
3分钟前
lyw发布了新的文献求助10
3分钟前
田様应助Stellarshi517采纳,获得20
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788568
求助须知:如何正确求助?哪些是违规求助? 5709401
关于积分的说明 15473692
捐赠科研通 4916583
什么是DOI,文献DOI怎么找? 2646482
邀请新用户注册赠送积分活动 1594146
关于科研通互助平台的介绍 1548577