Analysis of k-Fold Cross-Validation over Hold-Out Validation on Colossal Datasets for Quality Classification

交叉验证 计算机科学 模型验证 理想(伦理) 质量(理念) 数据挖掘 价值(数学) 折叠(高阶函数) 人工智能 机器学习 数据科学 认识论 哲学 程序设计语言
作者
Sanjay Yadav,Sanyam Shukla
出处
期刊:International Conference on Advanced Computing 被引量:231
标识
DOI:10.1109/iacc.2016.25
摘要

While training a model with data from a dataset, we have to think of an ideal way to do so. The training should be done in such a way that while the model has enough instances to train on, they should not over-fit the model and at the same time, it must be considered that if there are not enough instances to train on, the model would not be trained properly and would give poor results when used for testing. Accuracy is important when it comes to classification and one must always strive to achieve the highest accuracy, provided there is not trade off with inexcusable time. While working on small datasets, the ideal choices are k-fold cross-validation with large value of k (but smaller than number of instances) or leave-one-out cross-validation whereas while working on colossal datasets, the first thought is to use holdout validation, in general. This article studies the differences between the two validation schemes, analyzes the possibility of using k-fold cross-validation over hold-out validation even on large datasets. Experimentation was performed on four large datasets and results show that till a certain threshold, k-fold cross-validation with varying value of k with respect to number of instances can indeed be used over hold-out validation for quality classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
大池子发布了新的文献求助10
刚刚
刚刚
憨憨兔子完成签到,获得积分10
刚刚
wad完成签到,获得积分20
1秒前
1秒前
1秒前
小蘑菇应助wangmeili.采纳,获得10
1秒前
1秒前
Huang完成签到 ,获得积分0
1秒前
瘦瘦慕凝发布了新的文献求助10
1秒前
朴素太阳完成签到,获得积分20
2秒前
慧慧完成签到,获得积分10
2秒前
大鑫发布了新的文献求助10
3秒前
3秒前
hin完成签到,获得积分20
3秒前
豆西豆完成签到,获得积分10
3秒前
后知后觉完成签到,获得积分10
4秒前
开放诗翠完成签到,获得积分10
4秒前
Akim应助柒柒采纳,获得10
4秒前
上官若男应助一米阳光采纳,获得10
5秒前
张才豪发布了新的文献求助10
5秒前
7秒前
xiaoxia发布了新的文献求助10
7秒前
笑笑的妙松完成签到,获得积分10
8秒前
搜集达人应助冷傲奇异果采纳,获得10
8秒前
Tammy完成签到,获得积分10
8秒前
橙子完成签到,获得积分10
8秒前
EwhenQ完成签到,获得积分10
8秒前
潘尼沃斯完成签到,获得积分10
8秒前
平常涵柳完成签到,获得积分10
8秒前
9秒前
Akim应助瘦瘦慕凝采纳,获得10
9秒前
Shirky发布了新的文献求助10
9秒前
10秒前
后知后觉发布了新的文献求助10
10秒前
液氧完成签到,获得积分10
11秒前
11秒前
一事无成的研一完成签到 ,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4585514
求助须知:如何正确求助?哪些是违规求助? 4002204
关于积分的说明 12389666
捐赠科研通 3678349
什么是DOI,文献DOI怎么找? 2027265
邀请新用户注册赠送积分活动 1060773
科研通“疑难数据库(出版商)”最低求助积分说明 947278