Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation

机器翻译 计算机科学 人工智能 判决 短语 桥接(联网) 基于迁移的机器翻译 自然语言处理 人工神经网络 翻译(生物学) 推论 词(群论) 灵活性(工程) 基于实例的机器翻译 机器学习 哲学 统计 信使核糖核酸 化学 基因 生物化学 语言学 数学 计算机网络
作者
Yonghui Wu,Mike Schuster,Zhifeng Chen,Quoc V. Le,Mohammad Norouzi,Wolfgang Macherey,Maxim Krikun,Yuan Cao,Qin Gao,Klaus Macherey,Jeff Klingner,A. F. M. Shahen Shah,Melvin Johnson,Xiaobing Liu,Łukasz Kaiser,Stephan Gouws,Yasuhiro Kato,Takeo Kudo,Hideto Kazawa,Keith Stevens,George Thomas Kurian,Nishant Patil,Wei Wang,Cliff Young,Jason Smith,Jason Riesa,Alex Rudnick,Oriol Vinyals,Greg S. Corrado,Macduff Hughes,J. Michael Dean
出处
期刊:Cornell University - arXiv 被引量:2337
摘要

Neural Machine Translation (NMT) is an end-to-end learning approach for automated translation, with the potential to overcome many of the weaknesses of conventional phrase-based translation systems. Unfortunately, NMT systems are known to be computationally expensive both in training and in translation inference. Also, most NMT systems have difficulty with rare words. These issues have hindered NMT's use in practical deployments and services, where both accuracy and speed are essential. In this work, we present GNMT, Google's Neural Machine Translation system, which attempts to address many of these issues. Our model consists of a deep LSTM network with 8 encoder and 8 decoder layers using attention and residual connections. To improve parallelism and therefore decrease training time, our attention mechanism connects the bottom layer of the decoder to the top layer of the encoder. To accelerate the final translation speed, we employ low-precision arithmetic during inference computations. To improve handling of rare words, we divide words into a limited set of common sub-word units (wordpieces) for both input and output. This method provides a good balance between the flexibility of character-delimited models and the efficiency of word-delimited models, naturally handles translation of rare words, and ultimately improves the overall accuracy of the system. Our beam search technique employs a length-normalization procedure and uses a coverage penalty, which encourages generation of an output sentence that is most likely to cover all the words in the source sentence. On the WMT'14 English-to-French and English-to-German benchmarks, GNMT achieves competitive results to state-of-the-art. Using a human side-by-side evaluation on a set of isolated simple sentences, it reduces translation errors by an average of 60% compared to Google's phrase-based production system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助怕黑的擎采纳,获得10
刚刚
1秒前
W_GR完成签到,获得积分20
1秒前
Jiaxiao发布了新的文献求助10
1秒前
清风发布了新的文献求助10
1秒前
kongchanjie发布了新的文献求助10
2秒前
香蕉觅云应助kk子采纳,获得10
2秒前
yy完成签到,获得积分10
2秒前
NexusExplorer应助11223344采纳,获得10
2秒前
3秒前
Cookie发布了新的文献求助30
3秒前
4秒前
小蘑菇应助周周采纳,获得10
4秒前
结草衔环完成签到,获得积分10
4秒前
章如豹发布了新的文献求助10
5秒前
WILD完成签到,获得积分10
5秒前
Azaw发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
不想搞科研应助林曳采纳,获得20
8秒前
8秒前
江月完成签到,获得积分10
8秒前
hao123发布了新的文献求助10
8秒前
天天快乐应助忧伤的觅珍采纳,获得10
8秒前
hearz完成签到,获得积分10
9秒前
9秒前
就离谱应助SASFUD采纳,获得30
10秒前
orixero应助淡淡的凝冬采纳,获得30
10秒前
chenqq发布了新的文献求助10
11秒前
tracy完成签到,获得积分10
12秒前
TheRanger发布了新的文献求助10
12秒前
12秒前
12秒前
wanci应助狄绮采纳,获得10
12秒前
怕黑的擎发布了新的文献求助10
12秒前
wanci应助活泼元瑶采纳,获得10
13秒前
13秒前
13秒前
14秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3217369
求助须知:如何正确求助?哪些是违规求助? 2866690
关于积分的说明 8152715
捐赠科研通 2533461
什么是DOI,文献DOI怎么找? 1366197
科研通“疑难数据库(出版商)”最低求助积分说明 644716
邀请新用户注册赠送积分活动 617713