Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation

机器翻译 计算机科学 人工智能 判决 短语 桥接(联网) 基于迁移的机器翻译 自然语言处理 人工神经网络 翻译(生物学) 推论 词(群论) 灵活性(工程) 基于实例的机器翻译 机器学习 哲学 统计 信使核糖核酸 化学 基因 生物化学 语言学 数学 计算机网络
作者
Yonghui Wu,Mike Schuster,Zhifeng Chen,Quoc V. Le,Mohammad Norouzi,Wolfgang Macherey,Maxim Krikun,Yuan Cao,Qin Gao,Klaus Macherey,Jeff Klingner,A. F. M. Shahen Shah,Melvin Johnson,Xiaobing Liu,Łukasz Kaiser,Stephan Gouws,Yasuhiro Kato,Takeo Kudo,Hideto Kazawa,Keith Stevens,George Thomas Kurian,Nishant Patil,Wei Wang,Cliff Young,Jason Smith,Jason Riesa,Alex Rudnick,Oriol Vinyals,Greg S. Corrado,Macduff Hughes,J. Michael Dean
出处
期刊:Cornell University - arXiv 被引量:2337
摘要

Neural Machine Translation (NMT) is an end-to-end learning approach for automated translation, with the potential to overcome many of the weaknesses of conventional phrase-based translation systems. Unfortunately, NMT systems are known to be computationally expensive both in training and in translation inference. Also, most NMT systems have difficulty with rare words. These issues have hindered NMT's use in practical deployments and services, where both accuracy and speed are essential. In this work, we present GNMT, Google's Neural Machine Translation system, which attempts to address many of these issues. Our model consists of a deep LSTM network with 8 encoder and 8 decoder layers using attention and residual connections. To improve parallelism and therefore decrease training time, our attention mechanism connects the bottom layer of the decoder to the top layer of the encoder. To accelerate the final translation speed, we employ low-precision arithmetic during inference computations. To improve handling of rare words, we divide words into a limited set of common sub-word units (wordpieces) for both input and output. This method provides a good balance between the flexibility of character-delimited models and the efficiency of word-delimited models, naturally handles translation of rare words, and ultimately improves the overall accuracy of the system. Our beam search technique employs a length-normalization procedure and uses a coverage penalty, which encourages generation of an output sentence that is most likely to cover all the words in the source sentence. On the WMT'14 English-to-French and English-to-German benchmarks, GNMT achieves competitive results to state-of-the-art. Using a human side-by-side evaluation on a set of isolated simple sentences, it reduces translation errors by an average of 60% compared to Google's phrase-based production system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
3秒前
Crayon发布了新的文献求助10
3秒前
11完成签到,获得积分10
3秒前
李健应助乐乐采纳,获得10
4秒前
阮楷瑞发布了新的文献求助10
4秒前
yulee发布了新的文献求助10
5秒前
十一发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
巴爪鱼关注了科研通微信公众号
6秒前
6秒前
明理念桃发布了新的文献求助10
6秒前
田様应助鲤鱼安青采纳,获得10
6秒前
科研通AI2S应助为学日益采纳,获得10
7秒前
yydragen应助yangya采纳,获得30
7秒前
8秒前
莉莉发布了新的文献求助10
8秒前
8秒前
orixero应助Michelle米筛哦采纳,获得10
8秒前
AZE应助火山采纳,获得10
9秒前
小黑完成签到,获得积分10
9秒前
10秒前
CodeCraft应助円桑采纳,获得10
10秒前
CipherSage应助汤飞柏采纳,获得10
10秒前
10秒前
Owen应助1212采纳,获得10
10秒前
10秒前
10秒前
英俊的铭应助renj采纳,获得10
11秒前
英勇的新瑶完成签到,获得积分10
11秒前
猪猪hero发布了新的文献求助10
11秒前
11秒前
hhh发布了新的文献求助10
11秒前
xde145完成签到,获得积分10
11秒前
可耐的问凝完成签到,获得积分10
12秒前
李爱国应助帮帮我采纳,获得10
12秒前
海洋球完成签到,获得积分10
12秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974602
求助须知:如何正确求助?哪些是违规求助? 3519026
关于积分的说明 11196787
捐赠科研通 3255127
什么是DOI,文献DOI怎么找? 1797693
邀请新用户注册赠送积分活动 877100
科研通“疑难数据库(出版商)”最低求助积分说明 806130