差示扫描量热法
共聚物
材料科学
乙二醇
高分子化学
化学工程
PEG比率
傅里叶变换红外光谱
复合材料
聚合物
财务
热力学
物理
工程类
经济
作者
Nihal Sarıer,Refik Arat,Yusuf́ Z. Menceloǵlu,Emel Önder,Ezgi Ceren Boz Noyan,Oğuzhan Oğuz
标识
DOI:10.1016/j.tca.2016.10.002
摘要
This paper deals with the synthesis of poly(ethylene glycol) (PEG) grafted poly(acrylo nitrile) (PAN) copolymers as novel solid-solid phase change materials via two step free radical polymerization reaction. The structural and thermal characterizations of the synthesized copolymers, namely PEG1500-g-PAN, PEG2000-g-PAN, PEG4000-g-PAN, PEG10000-g-PAN and PEG35000-g-PAN, were performed by Fourier transform infrared spectroscopy, Nuclear magnetic resonance spectrometry, differential scanning calorimetry and thermogravimetry. They were thermally stable and had the capability of absorbing and releasing great amount of heat ranging between 70 and 126 J g−1 at the temperature interval of 40–65 °C during heating and successive cooling cycles. To transform the PEG-g-PAN copolymers into the assemblies appropriate for thermal energy storage (TES) systems, thermo-regulating PEG-g-PAN nanowebs were also produced by means of coaxial electrospinning. The SEM images of PEG-g-PAN nanowebs displayed that they were all composed of hollow cylindrical ultrafine fibers with the average diameters ranging in 175–277 nm. During the differential scanning calorimetry measurements, those nanowebs demonstrated repeatable solid-solid phase change with the heat storage capacities varying between 35 and 75 J g−1 at the same temperature interval with the corresponding PEG-g-PAN copolymers. The PEG-g-PAN copolymers and their electrospun nanowebs can be promising TES materials and can have convenient industrial applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI