Roles of Diacylglycerols and Ceramides in Hepatic Insulin Resistance

胰岛素抵抗 胰岛素 鞘脂 内分泌学 生物 神经酰胺 内科学 生物化学 医学 细胞凋亡
作者
Max C. Petersen,Gerald I. Shulman
出处
期刊:Trends in Pharmacological Sciences [Elsevier BV]
卷期号:38 (7): 649-665 被引量:311
标识
DOI:10.1016/j.tips.2017.04.004
摘要

Nonalcoholic fatty liver disease is the most common liver disease in industrialized nations and is strongly associated with hepatic insulin resistance, a key driver of type 2 diabetes. Although stored hepatic triglyceride is not thought to directly impair insulin action, two lipid classes proposed to mediate lipid-induced hepatic insulin resistance are ceramides and diacylglycerols (DAGs). A causal role for DAGs in hepatic insulin resistance is supported by human correlative studies and a direct pathophysiologic mechanism in rodents but challenged by a few rodent models with increased hepatic DAG but preserved hepatic insulin sensitivity. A causal role for ceramides in hepatic insulin resistance is supported by several rodent models in which decreasing ceramides improves hepatic insulin action but challenged by an inconsistent relationship between hepatic ceramide content and hepatic insulin resistance. Although ample evidence links hepatic lipid accumulation with hepatic insulin resistance, the mechanistic basis of this association is incompletely understood and controversial. Diacylglycerols (DAGs) and ceramides have emerged as the two best-studied putative mediators of lipid-induced hepatic insulin resistance. Both lipids were first associated with insulin resistance in skeletal muscle and were subsequently hypothesized to mediate insulin resistance in the liver. However, the putative roles for DAGs and ceramides in hepatic insulin resistance have proved more complex than originally imagined, with various genetic and pharmacologic manipulations yielding a vast and occasionally contradictory trove of data to sort. In this review we examine the state of this field, turning a critical eye toward both DAGs and ceramides as putative mediators of lipid-induced hepatic insulin resistance. Although ample evidence links hepatic lipid accumulation with hepatic insulin resistance, the mechanistic basis of this association is incompletely understood and controversial. Diacylglycerols (DAGs) and ceramides have emerged as the two best-studied putative mediators of lipid-induced hepatic insulin resistance. Both lipids were first associated with insulin resistance in skeletal muscle and were subsequently hypothesized to mediate insulin resistance in the liver. However, the putative roles for DAGs and ceramides in hepatic insulin resistance have proved more complex than originally imagined, with various genetic and pharmacologic manipulations yielding a vast and occasionally contradictory trove of data to sort. In this review we examine the state of this field, turning a critical eye toward both DAGs and ceramides as putative mediators of lipid-induced hepatic insulin resistance. a large class of lipids, many of which derive from the condensation of serine and palmitoyl CoA by serine palmitoyltransferase (SPT). Many ceramide species are bioactive and participate in diverse cellular signaling pathways. a class of lipids comprising a three-carbon glycerol backbone, two carbons of which are linked to fatty acyl chains of varying length. DAG exists in three stereoisomers (sn-1,2, sn-1,3, and sn-2,3); only sn-1,2-DAG is capable of activating PKC isoforms. DAG is generated through several metabolic fluxes, including triglyceride hydrolysis, triglyceride synthesis, and phosphoinositide hydrolysis. a condition in which the cellular response to a given ambient insulin concentration is decreased relative to a normal control. Insulin resistance as generally understood incorporates both decreased insulin sensitivity (a right shift in the insulin dose–response curve) and decreased insulin responsiveness (an impaired maximal response to high insulin concentrations). Insulin resistance has diverse manifestations in different tissues and is a component of the ‘metabolic syndrome’ that predicts incident T2D. increased liver triglyceride content without an alternative etiology (e.g., alcohol use, starvation, medications). NAFLD is a risk factor for nonalcoholic steatohepatitis (NASH) and hepatocellular carcinoma. NAFLD may or may not be accompanied by biochemical signs of hepatocellular injury, such as elevated serum transaminase activity, and is clinically silent in many patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒适的雁风完成签到,获得积分10
刚刚
15919229415完成签到,获得积分10
1秒前
四火完成签到,获得积分10
2秒前
学呀学完成签到 ,获得积分10
2秒前
3秒前
zoe完成签到 ,获得积分10
4秒前
6秒前
fangxin完成签到,获得积分10
7秒前
高贵逍遥完成签到 ,获得积分10
8秒前
小HO完成签到,获得积分10
8秒前
Ray发布了新的文献求助10
10秒前
小灰灰发布了新的文献求助10
10秒前
坦率尔琴完成签到,获得积分10
12秒前
Min完成签到,获得积分10
13秒前
代纤绮完成签到,获得积分10
14秒前
gnil完成签到,获得积分10
14秒前
liuzhongyi完成签到,获得积分10
15秒前
kellen完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助20
17秒前
Silence完成签到 ,获得积分10
18秒前
ian完成签到,获得积分10
18秒前
狂野的友灵完成签到 ,获得积分10
20秒前
21秒前
thchiang发布了新的文献求助10
21秒前
要开心完成签到,获得积分10
22秒前
文静的白羊完成签到,获得积分10
22秒前
25秒前
我我我完成签到,获得积分10
27秒前
小西完成签到 ,获得积分10
28秒前
海洋球完成签到 ,获得积分10
28秒前
Liao完成签到,获得积分10
28秒前
oVUVo完成签到,获得积分10
28秒前
Adler完成签到,获得积分10
30秒前
会飞的生菜完成签到,获得积分10
31秒前
32秒前
liu发布了新的文献求助10
32秒前
善学以致用应助土豆采纳,获得10
33秒前
认真映真完成签到,获得积分10
33秒前
36秒前
Damon完成签到 ,获得积分10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Nach dem Geist? 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5044866
求助须知:如何正确求助?哪些是违规求助? 4274363
关于积分的说明 13323824
捐赠科研通 4088132
什么是DOI,文献DOI怎么找? 2236778
邀请新用户注册赠送积分活动 1244134
关于科研通互助平台的介绍 1172157