抗氧化剂
抗坏血酸
耐旱性
叶绿素
光合作用
化学
脯氨酸
氧化应激
生物
园艺
农学
植物
生物化学
氨基酸
作者
Shahzada B. Amir,Rizwan Rasheed,Muhammad Arslan Ashraf,Iqbal Hussain,Muhammad Iqbal
摘要
Abstract Hydrogen sulfide (H 2 S) is a newly recognized molecule mediating plant defense responses under drought. The role of exogenous H 2 S in regulating plant responses under drought has been reported in a few plant species including spinach, wheat, Arabidopsis, soybean, and citrus plants. However, no report is available on the outcome of exogenous H 2 S on drought response in safflower plants. Therefore, the present study was planned to get insight into H 2 S‐mediated regulation of growth, secondary metabolism, oxidative defense, and uptake of minerals in two safflower cultivars (Safflower‐16427 and Safflower‐16493). Plants were exposed to two NaHS (0.5 and 1.0 mM) and two drought levels (70 and 50% field capacity [FC]). We found a notable depression in growth, yield, chlorophyll, and potassium (K + ) uptake under drought. The decline was more significant in plants facing 50% FC. The oxidative injury in plants was higher under severe drought and led to the decline in chlorophyll, plant biomass, and yield production. Drought induced a noticeable accretion in the accumulation of total soluble sugars, proline, ascorbic acid, anthocyanins, and secondary metabolites that protect plants against oxidative damages caused by drought. The activities of antioxidant enzymes increased substantially in safflower cultivars under drought. Besides, plants pretreated with NaHS (0.5 mM) subsided the oxidative damage by increasing the accumulation of secondary metabolites and strengthening the antioxidant capacity under drought. Further, drought plants suffered significant disturbances in ions homeostasis that was circumvented by exogenous H 2 S. The interactive effect of drought and H 2 S did not display a significant difference between the cultivars.
科研通智能强力驱动
Strongly Powered by AbleSci AI