Multidimensional measurement of poverty and its spatio-temporal dynamics in China from the perspective of development geography

贫穷 人均 可持续发展 中国 经济 经济增长 地理 发展经济学 社会经济学 政治学 人口 人口学 社会学 考古 法学
作者
Dong Yin,Gui Jin,Xiangzheng Deng,Feng Wu
出处
期刊:Journal of Geographical Sciences [Springer Nature]
卷期号:31 (1): 130-148 被引量:58
标识
DOI:10.1007/s11442-021-1836-x
摘要

Exploring the spatio-temporal dynamics of poverty is important for research on sustainable poverty reduction in China. Based on the perspective of development geography, this paper proposes a panel vector autoregressive (PVAR) model that combines the human development approach with the global indicator framework for Sustainable Development Goals (SDGs) to identify the poverty-causing and the poverty-reducing factors in China. The aim is to measure the multidimensional poverty index (MPI) of China’s provinces from 2007 to 2017, and use the exploratory spatio-temporal data analysis (ESTDA) method to reveal the characteristics of the spatio-temporal dynamics of multidimensional poverty. The results show the following: (1) The poverty-causing factors in China include the high social gross dependency ratio and crop-to-disaster ratio, and the poverty-reducing factors include the high per capita GDP, per capita social security expenditure, per capita public health expenditure, number of hospitals per 10,000 people, rate of participation in the new rural cooperative medical scheme, vegetation coverage, per capita education expenditure, number of universities, per capita research and development (R&D) expenditure, and funding per capita for cultural undertakings. (2) From 2007 to 2017, provincial income poverty (IP), health poverty (HP), cultural poverty (CP), and multidimensional poverty have been significantly reduced in China, and the overall national poverty has dropped by 5.67% annually. there is a differentiation in poverty along different dimensions in certain provinces. (3) During the study period, the local spatial pattern of multidimensional poverty between provinces showed strong spatial dynamics, and a trend of increase from the eastern to the central and western regions was noted. The MPI among provinces exhibited a strong spatial dependence over time to form a pattern of decrease from northwestern and northeastern China to the surrounding areas. (4) The spatio-temporal networks of multidimensional poverty in adjacent provinces were mainly negatively correlated, with only Shaanxi and Henan, Shaanxi and Ningxia, Qinghai and Gansu, Hubei and Anhui, Sichuan and Guizhou, and Hainan and Guangdong forming spatially strong cooperative poverty reduction relationships. These results have important reference value for the implementation of China’s poverty alleviation strategy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
will发布了新的文献求助200
1秒前
sophicey发布了新的文献求助10
1秒前
1秒前
1秒前
Suttier发布了新的文献求助10
2秒前
Lucas应助整齐的访梦采纳,获得10
2秒前
2秒前
lhy发布了新的文献求助10
2秒前
3秒前
小落看不完完成签到,获得积分10
3秒前
Dave发布了新的文献求助10
3秒前
大胆诗云发布了新的文献求助10
3秒前
蓝蓝发布了新的文献求助10
4秒前
大肚肚不怕凉完成签到,获得积分10
4秒前
汪筱喵完成签到,获得积分10
4秒前
蓝橙发布了新的文献求助10
4秒前
云汐儿完成签到,获得积分10
4秒前
上上谦完成签到,获得积分10
4秒前
yooooooo完成签到,获得积分10
5秒前
5秒前
fandada发布了新的文献求助10
5秒前
nanoyy发布了新的文献求助10
5秒前
喜悦的依琴完成签到,获得积分10
6秒前
ZYQ发布了新的文献求助10
6秒前
星辰大海应助北冥鱼采纳,获得10
6秒前
Boxcc发布了新的文献求助10
6秒前
ghhhhhh完成签到,获得积分10
6秒前
刘海杨完成签到,获得积分20
7秒前
7秒前
王一一发布了新的文献求助10
7秒前
科研通AI6应助羊羊杨采纳,获得10
7秒前
yanyan发布了新的文献求助10
7秒前
8秒前
俭朴的寇完成签到,获得积分10
8秒前
8秒前
科研通AI6应助儒雅龙采纳,获得10
8秒前
feiniupan完成签到,获得积分10
8秒前
Owen应助addr采纳,获得10
9秒前
ao发布了新的文献求助10
10秒前
echo发布了新的文献求助20
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5506056
求助须知:如何正确求助?哪些是违规求助? 4601542
关于积分的说明 14477374
捐赠科研通 4535544
什么是DOI,文献DOI怎么找? 2485440
邀请新用户注册赠送积分活动 1468399
关于科研通互助平台的介绍 1440887