Multidimensional measurement of poverty and its spatio-temporal dynamics in China from the perspective of development geography

贫穷 人均 可持续发展 中国 经济 经济增长 地理 发展经济学 社会经济学 政治学 人口 人口学 社会学 考古 法学
作者
Dong Yin,Gui Jin,Xiangzheng Deng,Feng Wu
出处
期刊:Journal of Geographical Sciences [Springer Nature]
卷期号:31 (1): 130-148 被引量:58
标识
DOI:10.1007/s11442-021-1836-x
摘要

Exploring the spatio-temporal dynamics of poverty is important for research on sustainable poverty reduction in China. Based on the perspective of development geography, this paper proposes a panel vector autoregressive (PVAR) model that combines the human development approach with the global indicator framework for Sustainable Development Goals (SDGs) to identify the poverty-causing and the poverty-reducing factors in China. The aim is to measure the multidimensional poverty index (MPI) of China’s provinces from 2007 to 2017, and use the exploratory spatio-temporal data analysis (ESTDA) method to reveal the characteristics of the spatio-temporal dynamics of multidimensional poverty. The results show the following: (1) The poverty-causing factors in China include the high social gross dependency ratio and crop-to-disaster ratio, and the poverty-reducing factors include the high per capita GDP, per capita social security expenditure, per capita public health expenditure, number of hospitals per 10,000 people, rate of participation in the new rural cooperative medical scheme, vegetation coverage, per capita education expenditure, number of universities, per capita research and development (R&D) expenditure, and funding per capita for cultural undertakings. (2) From 2007 to 2017, provincial income poverty (IP), health poverty (HP), cultural poverty (CP), and multidimensional poverty have been significantly reduced in China, and the overall national poverty has dropped by 5.67% annually. there is a differentiation in poverty along different dimensions in certain provinces. (3) During the study period, the local spatial pattern of multidimensional poverty between provinces showed strong spatial dynamics, and a trend of increase from the eastern to the central and western regions was noted. The MPI among provinces exhibited a strong spatial dependence over time to form a pattern of decrease from northwestern and northeastern China to the surrounding areas. (4) The spatio-temporal networks of multidimensional poverty in adjacent provinces were mainly negatively correlated, with only Shaanxi and Henan, Shaanxi and Ningxia, Qinghai and Gansu, Hubei and Anhui, Sichuan and Guizhou, and Hainan and Guangdong forming spatially strong cooperative poverty reduction relationships. These results have important reference value for the implementation of China’s poverty alleviation strategy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助初秋采纳,获得10
刚刚
max完成签到 ,获得积分10
刚刚
刚刚
1秒前
1秒前
NexusExplorer应助嘎嘎嘎嘎采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
平贝花应助科研通管家采纳,获得10
1秒前
阿三应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
Amber发布了新的文献求助10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
852应助科研通管家采纳,获得10
1秒前
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
ding应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
2秒前
zgrmws应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
jyy应助科研通管家采纳,获得10
2秒前
2秒前
tcf应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
2秒前
zgrmws应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得30
2秒前
tcf应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
Ava应助科研通管家采纳,获得10
2秒前
rain应助科研通管家采纳,获得10
2秒前
Lyuxxxian关注了科研通微信公众号
2秒前
rain应助科研通管家采纳,获得10
2秒前
tcf应助科研通管家采纳,获得10
3秒前
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660493
求助须知:如何正确求助?哪些是违规求助? 4834344
关于积分的说明 15090899
捐赠科研通 4819088
什么是DOI,文献DOI怎么找? 2579076
邀请新用户注册赠送积分活动 1533600
关于科研通互助平台的介绍 1492361