Multidimensional measurement of poverty and its spatio-temporal dynamics in China from the perspective of development geography

贫穷 人均 可持续发展 中国 经济 经济增长 地理 发展经济学 社会经济学 政治学 人口 人口学 社会学 考古 法学
作者
Dong Yin,Gui Jin,Xiangzheng Deng,Feng Wu
出处
期刊:Journal of Geographical Sciences [Springer Nature]
卷期号:31 (1): 130-148 被引量:58
标识
DOI:10.1007/s11442-021-1836-x
摘要

Exploring the spatio-temporal dynamics of poverty is important for research on sustainable poverty reduction in China. Based on the perspective of development geography, this paper proposes a panel vector autoregressive (PVAR) model that combines the human development approach with the global indicator framework for Sustainable Development Goals (SDGs) to identify the poverty-causing and the poverty-reducing factors in China. The aim is to measure the multidimensional poverty index (MPI) of China’s provinces from 2007 to 2017, and use the exploratory spatio-temporal data analysis (ESTDA) method to reveal the characteristics of the spatio-temporal dynamics of multidimensional poverty. The results show the following: (1) The poverty-causing factors in China include the high social gross dependency ratio and crop-to-disaster ratio, and the poverty-reducing factors include the high per capita GDP, per capita social security expenditure, per capita public health expenditure, number of hospitals per 10,000 people, rate of participation in the new rural cooperative medical scheme, vegetation coverage, per capita education expenditure, number of universities, per capita research and development (R&D) expenditure, and funding per capita for cultural undertakings. (2) From 2007 to 2017, provincial income poverty (IP), health poverty (HP), cultural poverty (CP), and multidimensional poverty have been significantly reduced in China, and the overall national poverty has dropped by 5.67% annually. there is a differentiation in poverty along different dimensions in certain provinces. (3) During the study period, the local spatial pattern of multidimensional poverty between provinces showed strong spatial dynamics, and a trend of increase from the eastern to the central and western regions was noted. The MPI among provinces exhibited a strong spatial dependence over time to form a pattern of decrease from northwestern and northeastern China to the surrounding areas. (4) The spatio-temporal networks of multidimensional poverty in adjacent provinces were mainly negatively correlated, with only Shaanxi and Henan, Shaanxi and Ningxia, Qinghai and Gansu, Hubei and Anhui, Sichuan and Guizhou, and Hainan and Guangdong forming spatially strong cooperative poverty reduction relationships. These results have important reference value for the implementation of China’s poverty alleviation strategy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助Toma采纳,获得10
刚刚
刚刚
cy发布了新的文献求助30
刚刚
PAUL完成签到,获得积分10
刚刚
玉鱼儿发布了新的文献求助10
1秒前
彪壮的吐司完成签到,获得积分10
1秒前
科研通AI2S应助123采纳,获得80
1秒前
1秒前
1秒前
1秒前
2秒前
zz发布了新的文献求助30
2秒前
Dre4m_Z完成签到,获得积分10
2秒前
3秒前
饶天源发布了新的文献求助10
3秒前
sy发布了新的文献求助10
3秒前
王乾宇发布了新的文献求助10
3秒前
科研通AI6.1应助ww采纳,获得10
3秒前
OvO发布了新的文献求助10
4秒前
沉静的诗桃完成签到,获得积分20
4秒前
4秒前
自然秋双发布了新的文献求助10
4秒前
Akiyuki完成签到,获得积分10
4秒前
愤怒的似狮完成签到,获得积分20
5秒前
5秒前
dere完成签到,获得积分10
5秒前
小龙发布了新的文献求助10
5秒前
xxg完成签到,获得积分10
6秒前
小匡完成签到 ,获得积分10
6秒前
6秒前
猪猪hero发布了新的文献求助10
6秒前
嘉嘉完成签到 ,获得积分10
6秒前
one发布了新的文献求助10
6秒前
猷鲛发布了新的文献求助10
7秒前
ruogu7发布了新的文献求助10
8秒前
敬老院N号发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
安珊应助务实的鸽子采纳,获得10
9秒前
9秒前
夏日重现完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5768619
求助须知:如何正确求助?哪些是违规求助? 5576280
关于积分的说明 15419148
捐赠科研通 4902454
什么是DOI,文献DOI怎么找? 2637767
邀请新用户注册赠送积分活动 1585694
关于科研通互助平台的介绍 1540805