材料科学
超级电容器
电流密度
制作
功率密度
空位缺陷
层状双氢氧化物
能量密度
化学工程
镍
氢氧化物
氧气
析氧
储能
纳米技术
电极
电化学
功率(物理)
冶金
工程物理
结晶学
有机化学
化学
物理化学
替代医学
病理
工程类
物理
医学
量子力学
作者
Yanqun Tang,Haoming Shen,Jinqian Cheng,Zibin Liang,Chong Qu,Hassina Tabassum,Ruqiang Zou
标识
DOI:10.1002/adfm.201908223
摘要
Abstract The rational design of advanced structures consisting of multiple components with excellent electrochemical capacitive properties is one of the crucial hindrances to be overcome for high‐performance supercapacitors (SCs). Herein, a superfast and facile synthesis of flower‐like NiMn‐layered double hydroxides (NiMn‐LDH) with high SC performance using an electrodeposition process on nickel foam is proposed. Oxygen vacancies are then modulated via mild H 2 O 2 treatment for the first time, significantly promoting the electrochemical energy storage performance. The oxygen‐vacancy abundant NiMn‐LDH (Ov‐LDH) reaches a maximum specific capacity of 1183 C g −1 at the current density of 1 A g −1 and retains a high capacity retention of 835 C g −1 even at a current density of up to 10 A g −1 . Furthermore, the assembled asymmetric SC device achieves a high specific energy density of 46.7 Wh kg −1 at a power density of 1.7 kW kg −1 . Oxygen vacancies are proven to play a vital role in the improvement of electrochemistry performance of LDH based on experimental and theoretical studies. This vacancy engineering strategy provides a new insight into SC active materials and should be beneficial for the design of the next generation of energy storage devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI