神经退行性变
多胺
溶酶体
精胺
细胞生物学
溶酶体贮存病
自噬
生物
生物化学
内科学
疾病
细胞凋亡
医学
酶
作者
Sarah van Veen,Shaun Martin,Chris Van den Haute,Veronick Benoy,Joseph A. Lyons,Roeland Vanhoutte,Jan Kähler,Jean-Paul Decuypere,Géraldine Gelders,Eric J. Lambie,Jeffrey Zielich,Johannes V. Swinnen,Wim Annaert,Patrizia Agostinis,Bart Ghesquière,Steven H. L. Verhelst,Veerle Baekelandt,Jan Eggermont,Peter Vangheluwe
出处
期刊:Nature
[Nature Portfolio]
日期:2020-01-29
卷期号:578 (7795): 419-424
被引量:256
标识
DOI:10.1038/s41586-020-1968-7
摘要
ATP13A2 (PARK9) is a late endolysosomal transporter that is genetically implicated in a spectrum of neurodegenerative disorders, including Kufor-Rakeb syndrome—a parkinsonism with dementia1—and early-onset Parkinson's disease2. ATP13A2 offers protection against genetic and environmental risk factors of Parkinson's disease, whereas loss of ATP13A2 compromises lysosomes3. However, the transport function of ATP13A2 in lysosomes remains unclear. Here we establish ATP13A2 as a lysosomal polyamine exporter that shows the highest affinity for spermine among the polyamines examined. Polyamines stimulate the activity of purified ATP13A2, whereas ATP13A2 mutants that are implicated in disease are functionally impaired to a degree that correlates with the disease phenotype. ATP13A2 promotes the cellular uptake of polyamines by endocytosis and transports them into the cytosol, highlighting a role for endolysosomes in the uptake of polyamines into cells. At high concentrations polyamines induce cell toxicity, which is exacerbated by ATP13A2 loss due to lysosomal dysfunction, lysosomal rupture and cathepsin B activation. This phenotype is recapitulated in neurons and nematodes with impaired expression of ATP13A2 or its orthologues. We present defective lysosomal polyamine export as a mechanism for lysosome-dependent cell death that may be implicated in neurodegeneration, and shed light on the molecular identity of the mammalian polyamine transport system. The lysosomal polyamine transporter ATP13A2 controls the cellular polyamine content, and impaired lysosomal polyamine export represents a lysosome-dependent cell death pathway that may be implicated in ATP13A2-associated neurodegeneration.
科研通智能强力驱动
Strongly Powered by AbleSci AI