High-accuracy prostate cancer pathology using deep learning

数字化病理学 深度学习 计算机科学 分级(工程) 前列腺癌 人工智能 工作流程 卷积神经网络 医学 分类器(UML) 病理 癌症 前列腺 机器学习 模式识别(心理学) 内科学 数据库 工程类 土木工程
作者
Yuri Tolkach,Tilmann Dohmgörgen,Marieta Toma,Glen Kristiansen
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:2 (7): 411-418 被引量:130
标识
DOI:10.1038/s42256-020-0200-7
摘要

Deep learning (DL) is a powerful methodology for the recognition and classification of tissue structures in digital pathology. Its performance in prostate cancer pathology is still under intensive investigation. Here we develop DL-based models for the detection of prostate cancer tissue in whole-slide images based on a large high-quality annotated training dataset and a modern state-of-the-art convolutional network architecture (NASNetLarge). The overall accuracy of our model for tumour detection in two validation cohorts is comparable to that of pathologists and reaches 97.3% in a native version and more than 98% using the suggested DL-based augmentation strategies. As a second step, we suggest a new biologically meaningful DL-based algorithm for Gleason grading of prostatic adenocarcinomas with high, human-level performance in prognostic stratification of patients when tested in several well-characterized validation cohorts. Furthermore, we determine the optimal minimal tumour size (real size of approximately 560 × 560 µm) for robust Gleason grading representative of the whole tumour focus. Our approach is realized in the unified digital pathology pipeline, which delivers all the relevant tumour metrics for a pathology report. Deep learning methods can be a powerful part of digital pathology workflows, provided well-annotated training datasets are available. Tolkach and colleagues develop a deep learning model to recognize and grade prostate cancer, based on a convolution neural network and a dataset with high-quality labels at gland-level precision.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
洛必达完成签到,获得积分10
1秒前
戚小发布了新的文献求助10
2秒前
2秒前
科研通AI6应助Luojiayi采纳,获得10
3秒前
Ellalala完成签到 ,获得积分10
4秒前
可爱的函函应助so采纳,获得10
4秒前
山谷与花发布了新的文献求助10
5秒前
5秒前
量子星尘发布了新的文献求助10
9秒前
蔺天宇完成签到,获得积分10
9秒前
星辰大海应助Whaoe采纳,获得10
9秒前
宫瑾瑜发布了新的文献求助10
10秒前
11秒前
Dr_Fang完成签到,获得积分10
11秒前
12秒前
12秒前
ding应助勤奋的溪流采纳,获得10
13秒前
传奇3应助繁星长明采纳,获得10
13秒前
元谷雪应助细腻戒指采纳,获得10
14秒前
自觉山柏发布了新的文献求助10
16秒前
16秒前
16秒前
Stars发布了新的文献求助30
17秒前
胡图图完成签到,获得积分20
18秒前
18秒前
18秒前
Lee发布了新的文献求助10
18秒前
爆米花应助luoliping采纳,获得10
19秒前
赘婿应助Freedom采纳,获得10
20秒前
20秒前
20秒前
mistletoe发布了新的文献求助10
21秒前
21秒前
22秒前
量子星尘发布了新的文献求助10
22秒前
22秒前
so发布了新的文献求助10
23秒前
高贵一德完成签到 ,获得积分20
24秒前
烟花应助小城故事和冰雨采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Eurocode 7. Geotechnical design - General rules (BS EN 1997-1:2004+A1:2013) 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578739
求助须知:如何正确求助?哪些是违规求助? 4663520
关于积分的说明 14747032
捐赠科研通 4604483
什么是DOI,文献DOI怎么找? 2526947
邀请新用户注册赠送积分活动 1496563
关于科研通互助平台的介绍 1465838