High-accuracy prostate cancer pathology using deep learning

数字化病理学 深度学习 计算机科学 分级(工程) 前列腺癌 人工智能 工作流程 卷积神经网络 医学 分类器(UML) 病理 癌症 前列腺 机器学习 模式识别(心理学) 内科学 数据库 工程类 土木工程
作者
Yuri Tolkach,Tilmann Dohmgörgen,Marieta Toma,Glen Kristiansen
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:2 (7): 411-418 被引量:130
标识
DOI:10.1038/s42256-020-0200-7
摘要

Deep learning (DL) is a powerful methodology for the recognition and classification of tissue structures in digital pathology. Its performance in prostate cancer pathology is still under intensive investigation. Here we develop DL-based models for the detection of prostate cancer tissue in whole-slide images based on a large high-quality annotated training dataset and a modern state-of-the-art convolutional network architecture (NASNetLarge). The overall accuracy of our model for tumour detection in two validation cohorts is comparable to that of pathologists and reaches 97.3% in a native version and more than 98% using the suggested DL-based augmentation strategies. As a second step, we suggest a new biologically meaningful DL-based algorithm for Gleason grading of prostatic adenocarcinomas with high, human-level performance in prognostic stratification of patients when tested in several well-characterized validation cohorts. Furthermore, we determine the optimal minimal tumour size (real size of approximately 560 × 560 µm) for robust Gleason grading representative of the whole tumour focus. Our approach is realized in the unified digital pathology pipeline, which delivers all the relevant tumour metrics for a pathology report. Deep learning methods can be a powerful part of digital pathology workflows, provided well-annotated training datasets are available. Tolkach and colleagues develop a deep learning model to recognize and grade prostate cancer, based on a convolution neural network and a dataset with high-quality labels at gland-level precision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
睡睡完成签到,获得积分10
刚刚
1秒前
2秒前
所所应助饕餮采纳,获得10
2秒前
平淡小凝发布了新的文献求助10
2秒前
nihaoxiaoai完成签到,获得积分10
3秒前
完美世界应助英俊的汉堡采纳,获得10
3秒前
爱静静应助hehe采纳,获得10
4秒前
九城发布了新的文献求助20
4秒前
斯文败类应助高君奇采纳,获得10
4秒前
小二郎应助特兰克斯采纳,获得10
4秒前
mojomars发布了新的文献求助10
4秒前
吃嘛嘛香完成签到,获得积分10
4秒前
wqy发布了新的文献求助10
5秒前
天天快乐应助新的心跳采纳,获得10
5秒前
Orange应助有益采纳,获得10
5秒前
7秒前
爆米花应助marinemiao采纳,获得10
7秒前
7秒前
招财不肥发布了新的文献求助10
8秒前
网安真难T_T完成签到,获得积分10
8秒前
大土豆子完成签到,获得积分10
9秒前
9秒前
甜甜醉波发布了新的文献求助10
10秒前
CodeCraft应助jy采纳,获得10
10秒前
领导范儿应助睡睡采纳,获得10
10秒前
哈哈完成签到 ,获得积分10
11秒前
Holleay123发布了新的文献求助10
12秒前
12秒前
13秒前
苏卿应助kento采纳,获得100
13秒前
小马甲应助满意之玉采纳,获得10
13秒前
14秒前
Jing完成签到,获得积分10
15秒前
饕餮发布了新的文献求助10
15秒前
16秒前
16秒前
wqy完成签到,获得积分10
16秒前
犹豫的戎完成签到,获得积分20
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808