计算机科学
光线追踪(物理)
随机森林
路径损耗
支持向量机
路径(计算)
算法
集合(抽象数据类型)
人工智能
机器学习
追踪
基础(拓扑)
数据集
试验装置
基站
k-最近邻算法
训练集
数据挖掘
数学
电信
数学分析
物理
量子力学
无线
程序设计语言
操作系统
作者
Sotirios K. Goudos,Georgia Athanasiadou,G.V. Tsoulos,Vasileios P. Rekkas
标识
DOI:10.23919/eucap48036.2020.9135639
摘要
In this paper, we apply different machine learning methods for the prediction of path loss in urban environment for cellular communications with unmanned aerial vehicles (UAVs). We generate the training set using a ray tracing technique assuming a flying base station at different heights within the city of Tripolis, Greece. We produce prediction models for the path loss using three different learners the k-Nearest Neighbors (kNN), the Support Vector Regression (SVR)and the Random Forest (RF). The obtained numerical results are compared with the original data from the test dataset using representative performance indicators and overall they exhibit good precision.
科研通智能强力驱动
Strongly Powered by AbleSci AI