Preoperative Assessment for High‐Risk Endometrial Cancer by Developing an MRI‐ and Clinical‐Based Radiomics Nomogram: A Multicenter Study

列线图 无线电技术 医学 子宫内膜癌 置信区间 逻辑回归 放射科 接收机工作特性 Lasso(编程语言) 淋巴结切除术 核医学 内科学 癌症 万维网 计算机科学
作者
Bi Cong Yan,Ying Li,Hua Feng,Feng Feng,Ming Sun,Guangwu Lin,Guofu Zhang,Jin Wei Qiang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:52 (6): 1872-1882 被引量:59
标识
DOI:10.1002/jmri.27289
摘要

Background High‐ and low‐risk endometrial cancer (EC) differ in whether lymphadenectomy is performed. Assessment of high‐risk EC is essential for planning surgery appropriately. Purpose To develop a radiomics nomogram for high‐risk EC prediction preoperatively. Study Type Retrospective. Population In all, 717 histopathologically confirmed EC patients (mean age, 56 years ± 9) divided into a primary group (394 patients from Center A), validation groups 1 and 2 (146 patients from Center B and 177 patients from Centers C–E). Field Strength/Sequence 1.5/ 3T scanners; T 2 ‐weighted imaging, diffusion‐weighted imaging, apparent diffusion coefficient, and contrast enhancement sequences. Assessment A radiomics nomogram was generated by combining the selected radiomics features and clinical parameters (metabolic syndrome, cancer antigen 125, age, tumor grade following curettage, and tumor size). The area under the curve (AUC) of the receiver operator characteristic was used to evaluate the predictive performance of the radiomics nomogram for high‐risk EC. The surgical procedure suggested by the nomogram was compared with the actual procedure performed for the patients. Net benefit of the radiomics nomogram was evaluated by a clinical decision curve (CDC), net reclassification index (NRI), and integrated discrimination improvement (IDI). Statistical Tests Binary least absolute shrinkage and selection operator (LASSO) logistic regression, linear regression, and multivariate binary logistic regression were used to select radiomics features and clinical parameters. Results The AUC for prediction of high‐risk EC for the radiomics nomogram in the primary group, validation groups 1 and 2 were 0.896 (95% confidence interval [CI]: 0.866–0.926), 0.877 (95% CI: 0.825–0.930), and 0.919 (95% CI: 0.879–0.960), respectively. The nomogram achieved good net benefit by CDC analysis for high‐risk EC. NRIs were 1.17, 1.28, and 1.51, and IDIs were 0.41, 0.60, and 0.61 in the primary group, validation groups 1 and 2, respectively. Data Conclusion The radiomics nomogram exhibited good performance in the individual prediction of high‐risk EC, and might be used for surgical management of EC. Level of Evidence 4 Technical Efficacy Stage 2 J. MAGN. RESON. IMAGING 2020;52:1872–1882.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高贵的哈密瓜数据线完成签到,获得积分10
1秒前
1秒前
1秒前
火乐头发布了新的文献求助10
2秒前
樱悼柳雪发布了新的文献求助10
3秒前
3秒前
MiManchi发布了新的文献求助10
3秒前
3秒前
5秒前
花花完成签到,获得积分10
5秒前
三三发布了新的文献求助10
6秒前
Komorebi发布了新的文献求助10
6秒前
6秒前
暖落完成签到,获得积分10
8秒前
sanmumu发布了新的文献求助10
8秒前
滴滴哒发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
代沁完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
12秒前
威武好吐司完成签到 ,获得积分10
12秒前
充电宝应助谢书南采纳,获得10
12秒前
12秒前
爆米花应助zzzz采纳,获得10
13秒前
烟花应助三三采纳,获得10
13秒前
田様应助双子土豆泥采纳,获得10
14秒前
yuhejiang发布了新的文献求助10
15秒前
15秒前
共享精神应助张雯雯采纳,获得10
15秒前
慕青应助北风语采纳,获得10
16秒前
量子星尘发布了新的文献求助10
16秒前
英姑应助snow采纳,获得10
17秒前
IIII发布了新的文献求助10
17秒前
17秒前
17秒前
17秒前
18秒前
寒月完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728534
求助须知:如何正确求助?哪些是违规求助? 5313250
关于积分的说明 15314452
捐赠科研通 4875726
什么是DOI,文献DOI怎么找? 2618947
邀请新用户注册赠送积分活动 1568530
关于科研通互助平台的介绍 1525171