Preoperative Assessment for High‐Risk Endometrial Cancer by Developing an MRI‐ and Clinical‐Based Radiomics Nomogram: A Multicenter Study

列线图 无线电技术 医学 子宫内膜癌 置信区间 逻辑回归 放射科 接收机工作特性 Lasso(编程语言) 淋巴结切除术 核医学 内科学 癌症 万维网 计算机科学
作者
Bi Cong Yan,Ying Li,Hua Feng,Feng Feng,Ming Sun,Guangwu Lin,Guofu Zhang,Jin Wei Qiang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:52 (6): 1872-1882 被引量:59
标识
DOI:10.1002/jmri.27289
摘要

Background High‐ and low‐risk endometrial cancer (EC) differ in whether lymphadenectomy is performed. Assessment of high‐risk EC is essential for planning surgery appropriately. Purpose To develop a radiomics nomogram for high‐risk EC prediction preoperatively. Study Type Retrospective. Population In all, 717 histopathologically confirmed EC patients (mean age, 56 years ± 9) divided into a primary group (394 patients from Center A), validation groups 1 and 2 (146 patients from Center B and 177 patients from Centers C–E). Field Strength/Sequence 1.5/ 3T scanners; T 2 ‐weighted imaging, diffusion‐weighted imaging, apparent diffusion coefficient, and contrast enhancement sequences. Assessment A radiomics nomogram was generated by combining the selected radiomics features and clinical parameters (metabolic syndrome, cancer antigen 125, age, tumor grade following curettage, and tumor size). The area under the curve (AUC) of the receiver operator characteristic was used to evaluate the predictive performance of the radiomics nomogram for high‐risk EC. The surgical procedure suggested by the nomogram was compared with the actual procedure performed for the patients. Net benefit of the radiomics nomogram was evaluated by a clinical decision curve (CDC), net reclassification index (NRI), and integrated discrimination improvement (IDI). Statistical Tests Binary least absolute shrinkage and selection operator (LASSO) logistic regression, linear regression, and multivariate binary logistic regression were used to select radiomics features and clinical parameters. Results The AUC for prediction of high‐risk EC for the radiomics nomogram in the primary group, validation groups 1 and 2 were 0.896 (95% confidence interval [CI]: 0.866–0.926), 0.877 (95% CI: 0.825–0.930), and 0.919 (95% CI: 0.879–0.960), respectively. The nomogram achieved good net benefit by CDC analysis for high‐risk EC. NRIs were 1.17, 1.28, and 1.51, and IDIs were 0.41, 0.60, and 0.61 in the primary group, validation groups 1 and 2, respectively. Data Conclusion The radiomics nomogram exhibited good performance in the individual prediction of high‐risk EC, and might be used for surgical management of EC. Level of Evidence 4 Technical Efficacy Stage 2 J. MAGN. RESON. IMAGING 2020;52:1872–1882.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
skysleeper完成签到,获得积分10
刚刚
hailiangzheng完成签到,获得积分10
1秒前
随便取完成签到,获得积分10
1秒前
时尚俊驰发布了新的文献求助10
1秒前
勤奋的如松完成签到,获得积分0
6秒前
粥可温完成签到,获得积分10
8秒前
曾珍发布了新的文献求助10
9秒前
10秒前
hzh完成签到 ,获得积分10
11秒前
gg发布了新的文献求助10
11秒前
勤劳滑板完成签到 ,获得积分10
11秒前
Jerry完成签到,获得积分10
12秒前
MrLiu完成签到,获得积分10
13秒前
冷傲博完成签到,获得积分10
13秒前
jeff完成签到,获得积分10
13秒前
LHZ完成签到,获得积分10
13秒前
所所应助时尚俊驰采纳,获得10
14秒前
影子芳香完成签到 ,获得积分10
15秒前
16秒前
16秒前
不必要再讨论适合与否完成签到,获得积分0
17秒前
无情夏寒完成签到 ,获得积分10
18秒前
慕青应助马士全采纳,获得10
19秒前
xuzj应助科研通管家采纳,获得10
19秒前
Rubby应助科研通管家采纳,获得30
20秒前
SciGPT应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
shiizii应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
20秒前
ludong_0应助科研通管家采纳,获得10
20秒前
YeeYee发布了新的文献求助10
20秒前
冷酷的松思完成签到,获得积分10
20秒前
zgt01发布了新的文献求助10
21秒前
zhang完成签到,获得积分10
21秒前
江中完成签到 ,获得积分10
23秒前
23秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038201
求助须知:如何正确求助?哪些是违规求助? 3575940
关于积分的说明 11373987
捐赠科研通 3305747
什么是DOI,文献DOI怎么找? 1819274
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022