Head and neck multi‐organ auto‐segmentation on CT images aided by synthetic MRI

轮廓 分割 头颈部 豪斯多夫距离 核医学 医学 视交叉 人工智能 计算机科学 解剖 视神经 外科 计算机图形学(图像)
作者
Yingzi Liu,Yang Lei,Yabo Fu,Tonghe Wang,Jun Zhou,Xiaojun Jiang,Mark W. McDonald,Jonathan J. Beitler,Walter J. Curran,Tian Liu,Xiaofeng Yang
出处
期刊:Medical Physics [Wiley]
卷期号:47 (9): 4294-4302 被引量:33
标识
DOI:10.1002/mp.14378
摘要

Purpose Because the manual contouring process is labor‐intensive and time‐consuming, segmentation of organs‐at‐risk (OARs) is a weak link in radiotherapy treatment planning process. Our goal was to develop a synthetic MR (sMR)‐aided dual pyramid network (DPN) for rapid and accurate head and neck multi‐organ segmentation in order to expedite the treatment planning process. Methods Forty‐five patients’ CT, MR, and manual contours pairs were included as our training dataset. Nineteen OARs were target organs to be segmented. The proposed sMR‐aided DPN method featured a deep attention strategy to effectively segment multiple organs. The performance of sMR‐aided DPN method was evaluated using five metrics, including Dice similarity coefficient (DSC), Hausdorff distance 95% (HD95), mean surface distance (MSD), residual mean square distance (RMSD), and volume difference. Our method was further validated using the 2015 head and neck challenge data. Results The contours generated by the proposed method closely resemble the ground truth manual contours, as evidenced by encouraging quantitative results in terms of DSC using the 2015 head and neck challenge data. Mean DSC values of 0.91 ± 0.02, 0.73 ± 0.11, 0.96 ± 0.01, 0.78 ± 0.09/0.78 ± 0.11, 0.88 ± 0.04/0.88 ± 0.06 and 0.86 ± 0.08/0.85 ± 0.1 were achieved for brain stem, chiasm, mandible, left/right optic nerve, left/right parotid, and left/right submandibular, respectively. Conclusions We demonstrated the feasibility of sMR‐aided DPN for head and neck multi‐organ delineation on CT images. Our method has shown superiority over the other methods on the 2015 head and neck challenge data results. The proposed method could significantly expedite the treatment planning process by rapidly segmenting multiple OARs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
荞麦馒头完成签到,获得积分10
1秒前
laura发布了新的文献求助10
1秒前
hamburger发布了新的文献求助10
2秒前
小兔子乖乖完成签到,获得积分10
2秒前
汉堡包应助ohh采纳,获得10
2秒前
4秒前
8秒前
8秒前
希望天下0贩的0应助djbj2022采纳,获得10
8秒前
所所应助hamburger采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得10
9秒前
mmyhn应助科研通管家采纳,获得20
9秒前
情怀应助科研通管家采纳,获得10
9秒前
JamesPei应助科研通管家采纳,获得10
9秒前
小马甲应助科研通管家采纳,获得10
9秒前
kk应助科研通管家采纳,获得10
9秒前
huang发布了新的文献求助10
10秒前
wanci应助顺利的尔烟采纳,获得10
11秒前
可乐发布了新的文献求助30
11秒前
12秒前
12秒前
Akim应助lingo采纳,获得10
13秒前
14秒前
14秒前
君华海逸完成签到,获得积分10
15秒前
zhan20200503发布了新的文献求助10
15秒前
16秒前
huang完成签到,获得积分20
17秒前
标致一手完成签到,获得积分20
17秒前
hxw发布了新的文献求助10
18秒前
M1982发布了新的文献求助10
18秒前
18秒前
黎悦发布了新的文献求助10
20秒前
dreamrain关注了科研通微信公众号
22秒前
好好好之顺利毕业完成签到,获得积分10
24秒前
25秒前
愉快天亦完成签到,获得积分10
26秒前
英姑应助感性的送终采纳,获得10
27秒前
27秒前
ding应助M1982采纳,获得10
28秒前
高分求助中
The Data Economy: Tools and Applications 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3120210
求助须知:如何正确求助?哪些是违规求助? 2770892
关于积分的说明 7705676
捐赠科研通 2426002
什么是DOI,文献DOI怎么找? 1288370
科研通“疑难数据库(出版商)”最低求助积分说明 620949
版权声明 600010