Head and neck multi‐organ auto‐segmentation on CT images aided by synthetic MRI

轮廓 分割 头颈部 豪斯多夫距离 核医学 医学 视交叉 人工智能 计算机科学 解剖 视神经 外科 计算机图形学(图像)
作者
Yingzi Liu,Yang Lei,Yabo Fu,Tonghe Wang,Jun Zhou,Xiaojun Jiang,Mark W. McDonald,Jonathan J. Beitler,Walter J. Curran,Tian Liu,Xiaofeng Yang
出处
期刊:Medical Physics [Wiley]
卷期号:47 (9): 4294-4302 被引量:46
标识
DOI:10.1002/mp.14378
摘要

Because the manual contouring process is labor-intensive and time-consuming, segmentation of organs-at-risk (OARs) is a weak link in radiotherapy treatment planning process. Our goal was to develop a synthetic MR (sMR)-aided dual pyramid network (DPN) for rapid and accurate head and neck multi-organ segmentation in order to expedite the treatment planning process.Forty-five patients' CT, MR, and manual contours pairs were included as our training dataset. Nineteen OARs were target organs to be segmented. The proposed sMR-aided DPN method featured a deep attention strategy to effectively segment multiple organs. The performance of sMR-aided DPN method was evaluated using five metrics, including Dice similarity coefficient (DSC), Hausdorff distance 95% (HD95), mean surface distance (MSD), residual mean square distance (RMSD), and volume difference. Our method was further validated using the 2015 head and neck challenge data.The contours generated by the proposed method closely resemble the ground truth manual contours, as evidenced by encouraging quantitative results in terms of DSC using the 2015 head and neck challenge data. Mean DSC values of 0.91 ± 0.02, 0.73 ± 0.11, 0.96 ± 0.01, 0.78 ± 0.09/0.78 ± 0.11, 0.88 ± 0.04/0.88 ± 0.06 and 0.86 ± 0.08/0.85 ± 0.1 were achieved for brain stem, chiasm, mandible, left/right optic nerve, left/right parotid, and left/right submandibular, respectively.We demonstrated the feasibility of sMR-aided DPN for head and neck multi-organ delineation on CT images. Our method has shown superiority over the other methods on the 2015 head and neck challenge data results. The proposed method could significantly expedite the treatment planning process by rapidly segmenting multiple OARs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zxy完成签到,获得积分10
1秒前
桐桐应助大大王采纳,获得10
1秒前
露西亚发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
Jiaaa完成签到 ,获得积分10
6秒前
6秒前
huaxue发布了新的文献求助10
7秒前
8秒前
8秒前
嘿嘿完成签到,获得积分10
8秒前
明理飞风完成签到,获得积分10
9秒前
健康的肺完成签到,获得积分10
10秒前
孙孙孙啊完成签到,获得积分10
10秒前
不安姿完成签到 ,获得积分10
11秒前
12秒前
传奇3应助虚幻盼晴采纳,获得10
12秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
Akim应助liudw采纳,获得10
13秒前
14秒前
Alone离殇完成签到 ,获得积分10
14秒前
光亮白猫关注了科研通微信公众号
14秒前
露西亚完成签到,获得积分10
14秒前
myg123完成签到 ,获得积分10
15秒前
16秒前
xioayu完成签到,获得积分10
16秒前
16秒前
小白先生完成签到,获得积分0
18秒前
18秒前
MaYue完成签到,获得积分10
18秒前
屿若发布了新的文献求助50
18秒前
现代rong完成签到,获得积分10
19秒前
汉堡包应助半夏采纳,获得10
19秒前
whikerlw完成签到,获得积分20
20秒前
20秒前
YZChen完成签到,获得积分10
21秒前
陆肆柒发布了新的文献求助10
21秒前
whoKnows应助露西亚采纳,获得20
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911216
求助须知:如何正确求助?哪些是违规求助? 4186705
关于积分的说明 13001055
捐赠科研通 3954531
什么是DOI,文献DOI怎么找? 2168334
邀请新用户注册赠送积分活动 1186721
关于科研通互助平台的介绍 1094125