Head and neck multi‐organ auto‐segmentation on CT images aided by synthetic MRI

轮廓 分割 头颈部 豪斯多夫距离 核医学 医学 视交叉 人工智能 计算机科学 解剖 视神经 外科 计算机图形学(图像)
作者
Yingzi Liu,Yang Lei,Yabo Fu,Tonghe Wang,Jun Zhou,Xiaojun Jiang,Mark W. McDonald,Jonathan J. Beitler,Walter J. Curran,Tian Liu,Xiaofeng Yang
出处
期刊:Medical Physics [Wiley]
卷期号:47 (9): 4294-4302 被引量:46
标识
DOI:10.1002/mp.14378
摘要

Because the manual contouring process is labor-intensive and time-consuming, segmentation of organs-at-risk (OARs) is a weak link in radiotherapy treatment planning process. Our goal was to develop a synthetic MR (sMR)-aided dual pyramid network (DPN) for rapid and accurate head and neck multi-organ segmentation in order to expedite the treatment planning process.Forty-five patients' CT, MR, and manual contours pairs were included as our training dataset. Nineteen OARs were target organs to be segmented. The proposed sMR-aided DPN method featured a deep attention strategy to effectively segment multiple organs. The performance of sMR-aided DPN method was evaluated using five metrics, including Dice similarity coefficient (DSC), Hausdorff distance 95% (HD95), mean surface distance (MSD), residual mean square distance (RMSD), and volume difference. Our method was further validated using the 2015 head and neck challenge data.The contours generated by the proposed method closely resemble the ground truth manual contours, as evidenced by encouraging quantitative results in terms of DSC using the 2015 head and neck challenge data. Mean DSC values of 0.91 ± 0.02, 0.73 ± 0.11, 0.96 ± 0.01, 0.78 ± 0.09/0.78 ± 0.11, 0.88 ± 0.04/0.88 ± 0.06 and 0.86 ± 0.08/0.85 ± 0.1 were achieved for brain stem, chiasm, mandible, left/right optic nerve, left/right parotid, and left/right submandibular, respectively.We demonstrated the feasibility of sMR-aided DPN for head and neck multi-organ delineation on CT images. Our method has shown superiority over the other methods on the 2015 head and neck challenge data results. The proposed method could significantly expedite the treatment planning process by rapidly segmenting multiple OARs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
闪999发布了新的文献求助10
1秒前
1秒前
星辰大海应助站住辣条采纳,获得30
1秒前
笑一笑完成签到,获得积分10
1秒前
1秒前
怡然的怜烟应助PU聚氨酯采纳,获得30
3秒前
老实天菱发布了新的文献求助10
4秒前
5秒前
Oui完成签到 ,获得积分10
5秒前
于丽萍发布了新的文献求助10
6秒前
LL完成签到 ,获得积分10
6秒前
xxfsx应助酷酷的问丝采纳,获得20
6秒前
6秒前
7秒前
拼搏的青雪完成签到 ,获得积分10
7秒前
Chai发布了新的文献求助10
7秒前
xxfsx应助温柔的伊采纳,获得10
7秒前
10秒前
了了发布了新的文献求助10
13秒前
boging发布了新的文献求助10
14秒前
陈小瑜完成签到,获得积分10
16秒前
英俊的铭应助闪999采纳,获得10
16秒前
affff完成签到 ,获得积分10
17秒前
20秒前
maguodrgon发布了新的文献求助10
20秒前
小宋发布了新的文献求助30
21秒前
小情绪发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
22秒前
清河剑客发布了新的文献求助10
25秒前
SDD完成签到,获得积分10
25秒前
27秒前
ll发布了新的文献求助10
27秒前
czr完成签到,获得积分10
29秒前
充电宝应助科研通管家采纳,获得10
29秒前
邓佳鑫Alan应助科研通管家采纳,获得10
29秒前
30秒前
科研通AI6应助科研通管家采纳,获得30
30秒前
邓佳鑫Alan应助科研通管家采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425403
求助须知:如何正确求助?哪些是违规求助? 4539499
关于积分的说明 14168184
捐赠科研通 4457031
什么是DOI,文献DOI怎么找? 2444414
邀请新用户注册赠送积分活动 1435321
关于科研通互助平台的介绍 1412740