Head and neck multi‐organ auto‐segmentation on CT images aided by synthetic MRI

轮廓 分割 头颈部 豪斯多夫距离 核医学 医学 视交叉 人工智能 计算机科学 解剖 视神经 外科 计算机图形学(图像)
作者
Yingzi Liu,Yang Lei,Yabo Fu,Tonghe Wang,Jun Zhou,Xiaojun Jiang,Mark W. McDonald,Jonathan J. Beitler,Walter J. Curran,Tian Liu,Xiaofeng Yang
出处
期刊:Medical Physics [Wiley]
卷期号:47 (9): 4294-4302 被引量:46
标识
DOI:10.1002/mp.14378
摘要

Because the manual contouring process is labor-intensive and time-consuming, segmentation of organs-at-risk (OARs) is a weak link in radiotherapy treatment planning process. Our goal was to develop a synthetic MR (sMR)-aided dual pyramid network (DPN) for rapid and accurate head and neck multi-organ segmentation in order to expedite the treatment planning process.Forty-five patients' CT, MR, and manual contours pairs were included as our training dataset. Nineteen OARs were target organs to be segmented. The proposed sMR-aided DPN method featured a deep attention strategy to effectively segment multiple organs. The performance of sMR-aided DPN method was evaluated using five metrics, including Dice similarity coefficient (DSC), Hausdorff distance 95% (HD95), mean surface distance (MSD), residual mean square distance (RMSD), and volume difference. Our method was further validated using the 2015 head and neck challenge data.The contours generated by the proposed method closely resemble the ground truth manual contours, as evidenced by encouraging quantitative results in terms of DSC using the 2015 head and neck challenge data. Mean DSC values of 0.91 ± 0.02, 0.73 ± 0.11, 0.96 ± 0.01, 0.78 ± 0.09/0.78 ± 0.11, 0.88 ± 0.04/0.88 ± 0.06 and 0.86 ± 0.08/0.85 ± 0.1 were achieved for brain stem, chiasm, mandible, left/right optic nerve, left/right parotid, and left/right submandibular, respectively.We demonstrated the feasibility of sMR-aided DPN for head and neck multi-organ delineation on CT images. Our method has shown superiority over the other methods on the 2015 head and neck challenge data results. The proposed method could significantly expedite the treatment planning process by rapidly segmenting multiple OARs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
积极的大白菜真实的钥匙完成签到,获得积分20
刚刚
刚刚
科研猫发布了新的文献求助30
1秒前
标致梦易发布了新的文献求助10
1秒前
空海完成签到,获得积分10
1秒前
1秒前
1秒前
浮游应助奋斗老鼠采纳,获得10
2秒前
大模型应助秋2采纳,获得10
3秒前
4秒前
4秒前
5秒前
松奈子发布了新的文献求助10
5秒前
风中桐完成签到,获得积分10
5秒前
蒙歡完成签到,获得积分10
5秒前
明理夜山发布了新的文献求助10
6秒前
笨笨的外套完成签到,获得积分10
6秒前
科研小白bai完成签到,获得积分10
6秒前
虚心的清发布了新的文献求助10
6秒前
Qi完成签到,获得积分20
7秒前
hj456完成签到,获得积分10
7秒前
王逗逗发布了新的文献求助10
7秒前
7秒前
lqqlqq发布了新的文献求助10
7秒前
8秒前
虚心求学完成签到,获得积分10
8秒前
Gu完成签到,获得积分10
9秒前
哆啦十七应助科研通管家采纳,获得10
9秒前
华仔应助科研通管家采纳,获得10
10秒前
10秒前
完美世界应助科研通管家采纳,获得10
10秒前
彭于晏应助科研通管家采纳,获得30
10秒前
哆啦十七应助科研通管家采纳,获得10
10秒前
SciGPT应助科研通管家采纳,获得30
10秒前
子车茗应助科研通管家采纳,获得20
10秒前
10秒前
香蕉觅云应助科研通管家采纳,获得30
10秒前
余晖完成签到,获得积分10
10秒前
子车茗应助科研通管家采纳,获得20
10秒前
无花果应助MHY采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5351999
求助须知:如何正确求助?哪些是违规求助? 4484908
关于积分的说明 13961093
捐赠科研通 4384639
什么是DOI,文献DOI怎么找? 2409094
邀请新用户注册赠送积分活动 1401552
关于科研通互助平台的介绍 1375095