Sorption and desorption behavior of PFOS and PFOA onto a Gram-positive and a Gram-negative bacterial species measured using particle-induced gamma-ray emission (PIGE) spectroscopy

吸附 全氟辛酸 解吸 化学 环境化学 X射线光电子能谱 粒子(生态学) 化学工程 吸附 有机化学 生物 生态学 工程类
作者
Margaret L. Butzen,John Wilkinson,Sean McGuinness,Samantha Amezquita,G. F. Peaslee,Jeremy B. Fein
出处
期刊:Chemical Geology [Elsevier BV]
卷期号:552: 119778-119778 被引量:37
标识
DOI:10.1016/j.chemgeo.2020.119778
摘要

In this study we examined whether a Gram-positive and a Gram-negative bacterial species have the capability to remove perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) from solution through sorption reactions under two different pH conditions. We developed a novel approach for quantifying PFAS in solution using particle-induced gamma-ray emission (PIGE) spectroscopy, and we used the results to constrain the important PFAS-bacterial sorption mechanisms. A mass balance experiment measuring PFOS in the aqueous phase and solid phase confirmed that PIGE spectroscopy measurements can account for all PFOS in the system, demonstrating for the first time how PIGE spectroscopy can be used to quantify the extent of PFAS sorption in experimental systems. Significant sorption occurred under most conditions studied, with up to 40 ± 5% and 67 ± 11% sorption of PFOA and PFOS, respectively. PFOA and PFOS sorption were both rapid, with steady-state being attained within minutes. PFOS sorption was pH dependent while PFOA sorption was pH independent, and greater sorption occurred onto Bacillus subtilis biomass compared to Pseudomonas putida biomass for both PFAS types. This sorption behavior suggests that pH, the PFAS head molecule, and cell wall structure all have a significant effect on the extent and mechanisms of bacterial sorption of PFAS. The observed sorption behaviors suggest that sorption of both molecules involves electrostatic and hydrophobic components. PFOS desorption was rapid and exhibited complete reversibility for both bacterial species, indicating that sorption is likely a cell surface phenomenon with no internalization occurring on the timescale of these experiments, and that the process can be modeled as an equilibrium reaction. Our work demonstrates that different PFAS molecules react to bacteria differently, and thus likely have markedly different mobilities in the environment. PFAS sorption in geologic systems is strongly influenced by organic matter, and our results suggest that biosorption may represent an inexpensive and effective PFAS remediation technique.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
killler完成签到,获得积分10
1秒前
domingo发布了新的文献求助10
2秒前
俏皮的荔枝完成签到,获得积分10
2秒前
慕青应助楼宸采纳,获得10
2秒前
老实向雁发布了新的文献求助10
3秒前
12366666发布了新的文献求助10
3秒前
3秒前
Famiglistmo完成签到,获得积分10
3秒前
lizz发布了新的文献求助10
4秒前
Hello应助自由的冰蓝采纳,获得10
4秒前
yy完成签到,获得积分10
5秒前
迷失之韵发布了新的文献求助10
5秒前
Kung完成签到 ,获得积分10
5秒前
5秒前
Xu关闭了Xu文献求助
5秒前
dracovu完成签到,获得积分10
5秒前
Diss发布了新的文献求助100
6秒前
6秒前
乐乐应助泉水采纳,获得10
6秒前
6秒前
小马甲应助淡然的大碗采纳,获得10
6秒前
桐桐应助F_ken采纳,获得10
6秒前
7秒前
cerelia完成签到,获得积分20
7秒前
7秒前
烟火会翻滚完成签到,获得积分10
8秒前
8秒前
乐天完成签到,获得积分10
9秒前
adastra发布了新的文献求助30
9秒前
Bubble发布了新的文献求助10
9秒前
SYLH应助乱世才子采纳,获得15
9秒前
10秒前
10秒前
10秒前
ELITOmiko发布了新的文献求助10
10秒前
通~发布了新的文献求助10
10秒前
11秒前
细心的雁玉完成签到,获得积分20
11秒前
F_ken完成签到,获得积分10
11秒前
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958780
求助须知:如何正确求助?哪些是违规求助? 3504977
关于积分的说明 11121403
捐赠科研通 3236362
什么是DOI,文献DOI怎么找? 1788752
邀请新用户注册赠送积分活动 871360
科研通“疑难数据库(出版商)”最低求助积分说明 802707