Parallel Deep Learning Algorithms With Hybrid Attention Mechanism for Image Segmentation of Lung Tumors

计算机科学 人工智能 分割 预处理器 图像分割 深度学习 机制(生物学) 卷积(计算机科学) 块(置换群论) 卷积神经网络 模式识别(心理学) 计算机视觉 算法 人工神经网络 数学 哲学 几何学 认识论
作者
Hexuan Hu,Qingqiu Li,Yunfeng Zhao,Ye Zhang
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:17 (4): 2880-2889 被引量:91
标识
DOI:10.1109/tii.2020.3022912
摘要

At present, medical images have played a more and more important role in clinical treatment. Lung images provide an important reference for doctors to make a diagnosis. Especially for surgical patients, a tumor can be accurately removed based on the full cognition about its size, position, and quantity. Therefore, computer-aided diagnosis for the analysis and treatment of a lot of lung tumor images is very important. Aiming at complexity and self-adaption of image segmentation in lung tumors, this article proposed a parallel deep learning algorithm with hybrid attention mechanism for image segmentation. First, lung parenchyma was extracted via preprocessing images. Then, images were input into hybrid attention mechanism and densely connected convolutional networks (DenseNet) module, respectively, where hybrid attention mechanism consisted of a spatial attention mechanism and a channel attention mechanism. Finally, four feasible solutions were proposed for the verification through changing the convolution quantity of dense block in DenseNet. The network structure with the better performance was achieved. The experimental results prove the parallel deep learning algorithm with hybrid attention mechanism performed well in image segmentation of lung tumors, and its accuracy can reach 94.61%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超帅花瓣发布了新的文献求助10
刚刚
月蓉儿发布了新的文献求助10
1秒前
成就含玉发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
JaneChen完成签到 ,获得积分10
3秒前
李健应助涵泽采纳,获得10
3秒前
TIAMO发布了新的文献求助10
4秒前
4秒前
4秒前
Pendulium发布了新的文献求助10
4秒前
yi学生完成签到,获得积分10
5秒前
5秒前
大模型应助叶子采纳,获得10
5秒前
6秒前
儒雅的猪八蛋完成签到,获得积分10
6秒前
SciGPT应助Hey采纳,获得10
6秒前
7秒前
summer完成签到,获得积分20
7秒前
忧虑的乘云完成签到,获得积分20
8秒前
8秒前
syy完成签到,获得积分10
8秒前
8秒前
我是老大应助Wink14551采纳,获得10
9秒前
烟花应助Snoopy采纳,获得10
9秒前
9秒前
jhih发布了新的文献求助10
9秒前
任性映秋完成签到,获得积分10
9秒前
xx发布了新的文献求助10
10秒前
10秒前
11秒前
852应助星河采纳,获得10
11秒前
嘿嘿发布了新的文献求助10
11秒前
华仔应助姜姜采纳,获得30
11秒前
hh完成签到,获得积分10
11秒前
syy发布了新的文献求助10
11秒前
12秒前
姜姜完成签到,获得积分10
13秒前
wu发布了新的文献求助30
13秒前
13秒前
Hello应助温暖小霸王采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5593712
求助须知:如何正确求助?哪些是违规求助? 4679550
关于积分的说明 14810466
捐赠科研通 4644670
什么是DOI,文献DOI怎么找? 2534601
邀请新用户注册赠送积分活动 1502645
关于科研通互助平台的介绍 1469366