The combined ratio of estrogen, progesterone, Ki‐67, and P53 to predict the recurrence of endometrial cancer

医学 子宫内膜癌 接收机工作特性 内科学 多元分析 比例危险模型 单变量分析 癌症 乳腺癌 妇科 阶段(地层学) 肿瘤科 胃肠病学 辅助治疗 古生物学 生物
作者
Ming Jia,Peng Jiang,Zhen Huang,Jiyi Hu,Ying Deng,Zhuoying Hu
出处
期刊:Journal of Surgical Oncology [Wiley]
卷期号:122 (8): 1808-1814 被引量:13
标识
DOI:10.1002/jso.26212
摘要

Abstract Background and Objectives We aimed to explore the capacity of the combined ratio of biomarkers to predict the recurrence of Stage I–III endometrial cancer (EC). Methods A total of 473 patients were enrolled after screening. The cut‐off value of the ratio was calculated by the receiver operating characteristic curve (ROC). The univariate and multivariate Cox regression analysis was used to assess the correlation between the combined ratio and the recurrence of EC. The differences of clinicopathological parameters between the two groups divided based on the threshold were compared. Result The ROC curve showed that 0.92 was the optimal cut‐off value of the ratio ([ER + PR]/[P53 + Ki67]). The multivariate analysis demonstrated that only International Federation of Gynecology and Obstetrics stage ( p = .031) and the combined ratio ( p = .004) were independent risk factors of recurrence. The 3‐year recurrence‐free survival (RFS) and overall survival of patients in the low‐ratio group were 54.1% and 66.8%, respectively; while in the high‐ratio group were 94.9% and 97.9%, respectively ( p < .001). The 3‐year RFS of 194 patients, who did not receive the adjuvant therapy, was 54.7% and 97.2% between two groups ( p < .001). Conclusions The optimal cut‐off value (0.92) of the combined ratio was demonstrated to be better to predict the recurrence of EC than a single immunohistochemical marker.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
粗心的忆山完成签到 ,获得积分10
刚刚
刚刚
量子星尘发布了新的文献求助10
刚刚
深情安青应助肖雪依采纳,获得10
刚刚
邵振启发布了新的文献求助10
1秒前
lu2025发布了新的文献求助10
1秒前
感动城完成签到,获得积分10
1秒前
朴素的雪瑶完成签到,获得积分10
1秒前
幸福的蓝血完成签到,获得积分10
2秒前
LFB完成签到,获得积分10
2秒前
xinghe123完成签到,获得积分10
2秒前
mm应助帅气善斓采纳,获得10
3秒前
香蕉觅云应助甜甜圈采纳,获得10
3秒前
帅帅哈完成签到,获得积分10
4秒前
小蘑菇应助关畅澎采纳,获得10
4秒前
4秒前
4秒前
火星上的绿蕊完成签到,获得积分10
4秒前
噜噜噜完成签到 ,获得积分10
5秒前
5秒前
amy完成签到,获得积分10
5秒前
纵马长歌完成签到,获得积分10
5秒前
852应助无限安荷采纳,获得10
5秒前
科研辣椒完成签到,获得积分10
6秒前
董春伟完成签到,获得积分10
7秒前
frank完成签到,获得积分10
7秒前
phj完成签到,获得积分10
8秒前
MAVS完成签到,获得积分10
8秒前
8秒前
爪爪完成签到,获得积分10
8秒前
一词压两宋完成签到,获得积分10
9秒前
聪明新筠完成签到,获得积分10
9秒前
Cloris完成签到,获得积分10
9秒前
2hi完成签到,获得积分10
9秒前
佳佳发布了新的文献求助10
10秒前
Verritis完成签到,获得积分10
10秒前
十月天秤完成签到,获得积分10
10秒前
Apricity完成签到,获得积分10
10秒前
从容的胡萝卜完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651684
求助须知:如何正确求助?哪些是违规求助? 4785671
关于积分的说明 15055211
捐赠科研通 4810389
什么是DOI,文献DOI怎么找? 2573087
邀请新用户注册赠送积分活动 1529005
关于科研通互助平台的介绍 1487961