The combined ratio of estrogen, progesterone, Ki‐67, and P53 to predict the recurrence of endometrial cancer

医学 子宫内膜癌 接收机工作特性 内科学 多元分析 比例危险模型 单变量分析 癌症 乳腺癌 妇科 阶段(地层学) 肿瘤科 胃肠病学 辅助治疗 古生物学 生物
作者
Ming Jia,Peng Jiang,Zhen Huang,Jiyi Hu,Ying Deng,Zhuoying Hu
出处
期刊:Journal of Surgical Oncology [Wiley]
卷期号:122 (8): 1808-1814 被引量:13
标识
DOI:10.1002/jso.26212
摘要

Abstract Background and Objectives We aimed to explore the capacity of the combined ratio of biomarkers to predict the recurrence of Stage I–III endometrial cancer (EC). Methods A total of 473 patients were enrolled after screening. The cut‐off value of the ratio was calculated by the receiver operating characteristic curve (ROC). The univariate and multivariate Cox regression analysis was used to assess the correlation between the combined ratio and the recurrence of EC. The differences of clinicopathological parameters between the two groups divided based on the threshold were compared. Result The ROC curve showed that 0.92 was the optimal cut‐off value of the ratio ([ER + PR]/[P53 + Ki67]). The multivariate analysis demonstrated that only International Federation of Gynecology and Obstetrics stage ( p = .031) and the combined ratio ( p = .004) were independent risk factors of recurrence. The 3‐year recurrence‐free survival (RFS) and overall survival of patients in the low‐ratio group were 54.1% and 66.8%, respectively; while in the high‐ratio group were 94.9% and 97.9%, respectively ( p < .001). The 3‐year RFS of 194 patients, who did not receive the adjuvant therapy, was 54.7% and 97.2% between two groups ( p < .001). Conclusions The optimal cut‐off value (0.92) of the combined ratio was demonstrated to be better to predict the recurrence of EC than a single immunohistochemical marker.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
文献狗完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
zy发布了新的文献求助10
2秒前
紫霄客发布了新的文献求助10
2秒前
Savannah发布了新的文献求助10
2秒前
bkagyin应助岸久舞若衣采纳,获得10
3秒前
chamberlain完成签到 ,获得积分10
3秒前
Yaaaaaa发布了新的文献求助10
3秒前
天天快乐应助tamato采纳,获得10
4秒前
平淡远航完成签到,获得积分10
4秒前
Hi发布了新的文献求助10
4秒前
4秒前
雨陌应助EASA采纳,获得10
4秒前
li发布了新的文献求助10
5秒前
脑洞疼应助卷儿w采纳,获得10
5秒前
sakura发布了新的文献求助10
5秒前
6秒前
Lucas应助爱吃果冻采纳,获得10
7秒前
7秒前
7秒前
Akim应助一路硕博采纳,获得10
7秒前
清风发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
non完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
研友_nVNVVn应助朴实的之云采纳,获得10
8秒前
8秒前
甜甜的满天完成签到,获得积分10
9秒前
xinyu完成签到,获得积分20
10秒前
11秒前
11秒前
11秒前
hudaojiadecaigou完成签到,获得积分10
12秒前
愉快的莹发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718656
求助须知:如何正确求助?哪些是违规求助? 5253667
关于积分的说明 15286658
捐赠科研通 4868722
什么是DOI,文献DOI怎么找? 2614394
邀请新用户注册赠送积分活动 1564266
关于科研通互助平台的介绍 1521785