Estimating Dynamic Functional Brain Connectivity With a Sparse Hidden Markov Model

隐马尔可夫模型 动态功能连接 计算机科学 功能磁共振成像 人工智能 静息状态功能磁共振成像 模式识别(心理学) 高斯分布 人类连接体项目 默认模式网络 功能连接 神经科学 心理学 量子力学 物理
作者
Gemeng Zhang,Biao Cai,Aiying Zhang,Julia M. Stephen,Tony W. Wilson,Vince D. Calhoun,Yu‐Ping Wang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:39 (2): 488-498 被引量:51
标识
DOI:10.1109/tmi.2019.2929959
摘要

Estimating dynamic functional network connectivity (dFNC) of the brain from functional magnetic resonance imaging (fMRI) data can reveal both spatial and temporal organization and can be applied to track the developmental trajectory of brain maturity as well as to study mental illness. Resting state fMRI (rs-fMRI) is regarded as a promising task since it reflects the spontaneous brain activity without an external stimulus. The sliding window method has been successfully used to extract dFNC but typically assumes a fixed window size. The hidden Markov model (HMM) based method is an alternative approach for estimating time-varying connectivity. In this paper, we propose a sparse HMM based on Gaussian HMM and Gaussian graphical model (GGM). In this model, the time-varying neural processes are represented as discrete brain states which are described with functional connectivity networks. By enforcing the sparsity on the precision matrix, we can get interpretable connectivity between different functional regions. The optimization of our model can be realized with the expectation maximization (EM) and graphical least absolute shrinkage and selection operator (glasso) algorithms. The proposed model is validated on both simulated blood oxygenation-level dependent (BOLD) time series and rs-fMRI data. Results indicate that the proposed model can capture both stationary and abrupt brain activity fluctuations. We also compare dFNC patterns between children and young adults from the Philadelphia Neurodevelopmental Cohort (PNC) study. Both spatial and temporal behavior of the dFNC are analyzed and compared. The results provide insight into the developmental trajectory across childhood and motivate further research on brain connectivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
4秒前
fhbc发布了新的文献求助10
6秒前
chri驳回了puhu应助
8秒前
8秒前
思源应助夏叶采纳,获得10
9秒前
Eastonlyzhang完成签到,获得积分10
10秒前
10秒前
shelemi发布了新的文献求助10
11秒前
HCLonely举报聆听求助涉嫌违规
12秒前
pluto应助Eifuly采纳,获得30
12秒前
小于发布了新的文献求助10
12秒前
科研張应助酷酷珠采纳,获得20
15秒前
17秒前
123应助清雨丶赤羽采纳,获得10
18秒前
每天都很忙完成签到 ,获得积分10
19秒前
贪玩的元彤完成签到,获得积分10
19秒前
26秒前
28秒前
Jasper应助Octozhang采纳,获得50
29秒前
33秒前
onto完成签到,获得积分10
37秒前
38秒前
不吃脑花发布了新的文献求助10
39秒前
42秒前
华仔应助科研通管家采纳,获得30
42秒前
我是老大应助心灵美语兰采纳,获得10
42秒前
彭于晏应助科研通管家采纳,获得10
42秒前
研友_VZG7GZ应助科研通管家采纳,获得30
42秒前
42秒前
SciGPT应助科研通管家采纳,获得10
43秒前
火山羊发布了新的文献求助10
46秒前
47秒前
菜菜带带完成签到,获得积分10
48秒前
HaiFeng完成签到,获得积分10
48秒前
OeO完成签到 ,获得积分10
48秒前
49秒前
lu完成签到,获得积分10
50秒前
51秒前
51秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313635
求助须知:如何正确求助?哪些是违规求助? 2945947
关于积分的说明 8527726
捐赠科研通 2621578
什么是DOI,文献DOI怎么找? 1433864
科研通“疑难数据库(出版商)”最低求助积分说明 665098
邀请新用户注册赠送积分活动 650637