Machine learning integrated ensemble of feature selection methods followed by survival analysis for predicting breast cancer subtype specific miRNA biomarkers

特征选择 乳腺癌 机器学习 人工智能 计算机科学 分类 小RNA 选择(遗传算法) 鉴定(生物学) 交叉验证 集成学习 计算生物学 特征(语言学) 癌症 生物 基因 遗传学 语言学 哲学 植物
作者
Jnanendra Prasad Sarkar,Indrajit Saha,Anasua Sarkar,Ujjwal Maulik
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:131: 104244-104244 被引量:73
标识
DOI:10.1016/j.compbiomed.2021.104244
摘要

Breast cancer is the second leading cancer type among females. In this regard, it is found that microRNAs play an important role by regulating the gene expressions at the post-transcriptional phase. However, identification of the most influencing miRNAs in breast cancer subtypes is a challenging task, while the recent advancement in Next Generation Sequencing techniques allows analyzing high throughput expression data of miRNAs. Thus, we have conducted this research with the help of NGS data of breast cancer in order to identify the most significant miRNA biomarkers. The selected miRNA biomarkers are highly associated with the multiple breast cancer subtypes. For this purpose, a two-phase technique, called Machine Learning Integrated Ensemble of Feature Selection Methods, followed by survival analysis, is proposed. In the first phase, we have selected the best among seven machine learning techniques based on classification accuracy using the entire set of features (in this case miRNAs). Subsequently, eight different feature selection methods are used separately in order to rank the features and validate each set of top features using the selected machine learning technique by considering a multi-class classification task of the breast cancer subtypes. In the second phase, based on the classification accuracy values, the top features from each feature selection method are considered to make an ensemble to provide further categorization of the miRNAs as 8*, 7* up to 1*. The 8* miRNAs provide the highest average classification accuracy of 86% after 10-fold cross-validation. Thereafter, 27 miRNAs are identified from the list that is confined within 8* to 4* miRNAs based on their importance in survival for breast cancer subtypes using Cox regression based survival analysis. Moreover, expression analysis, regulatory network analysis, protein-protein interaction analysis, KEGG pathway and gene ontology enrichment analysis are performed in order to validate biological significance of the proposed solution. Additionally, we have prepared a miRNA-protein-drug interaction network to identify possible drug for the selected miRNAs. Thus, our findings may be considered during a clinical trial for the treatment of breast cancer patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
N型半导体发布了新的文献求助10
3秒前
Surpass完成签到,获得积分10
5秒前
77完成签到 ,获得积分10
8秒前
深情安青应助闾丘惜萱采纳,获得10
14秒前
亮不卡完成签到 ,获得积分10
15秒前
372925abc发布了新的文献求助10
15秒前
研友_Z11kkZ完成签到 ,获得积分20
16秒前
伶俐绿柏完成签到 ,获得积分10
18秒前
19秒前
20秒前
22秒前
xdd发布了新的文献求助100
23秒前
24秒前
25秒前
啦啦完成签到,获得积分10
27秒前
迷路世立完成签到,获得积分10
29秒前
31秒前
流砂完成签到,获得积分10
32秒前
33秒前
fugu0完成签到,获得积分10
36秒前
37秒前
37秒前
孤独的问凝完成签到,获得积分10
37秒前
有空关注了科研通微信公众号
37秒前
隐形曼青应助N型半导体采纳,获得10
38秒前
TRY发布了新的文献求助10
39秒前
牛牛眉目发布了新的文献求助10
39秒前
SYLH应助Hibiscus95采纳,获得10
40秒前
FashionBoy应助红叶采纳,获得10
40秒前
40秒前
42秒前
叫我益达完成签到,获得积分10
43秒前
单纯的爆米花完成签到,获得积分10
44秒前
44秒前
lyn发布了新的文献求助10
44秒前
ED应助科研通管家采纳,获得10
44秒前
科研通AI2S应助科研通管家采纳,获得10
44秒前
44秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966324
求助须知:如何正确求助?哪些是违规求助? 3511740
关于积分的说明 11159404
捐赠科研通 3246305
什么是DOI,文献DOI怎么找? 1793370
邀请新用户注册赠送积分活动 874364
科研通“疑难数据库(出版商)”最低求助积分说明 804357