亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Risk Prediction Model Based on Machine Learning for Cognitive Impairment Among Chinese Community-Dwelling Elderly People With Normal Cognition: Development and Validation Study

认知 老年学 认知障碍 医学 机器学习 人工智能 心理学 计算机科学 精神科
作者
Mingyue Hu,Xinhui Shu,Gang Yu,Xinyin Wu,Maritta Välimäki,Hui Feng
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:23 (2): e20298-e20298 被引量:100
标识
DOI:10.2196/20298
摘要

Identifying cognitive impairment early enough could support timely intervention that may hinder or delay the trajectory of cognitive impairment, thus increasing the chances for successful cognitive aging.We aimed to build a prediction model based on machine learning for cognitive impairment among Chinese community-dwelling elderly people with normal cognition.A prospective cohort of 6718 older people from the Chinese Longitudinal Healthy Longevity Survey (CLHLS) register, followed between 2008 and 2011, was used to develop and validate the prediction model. Participants were included if they were aged 60 years or above, were community-dwelling elderly people, and had a cognitive Mini-Mental State Examination (MMSE) score ≥18. They were excluded if they were diagnosed with a severe disease (eg, cancer and dementia) or were living in institutions. Cognitive impairment was identified using the Chinese version of the MMSE. Several machine learning algorithms (random forest, XGBoost, naïve Bayes, and logistic regression) were used to assess the 3-year risk of developing cognitive impairment. Optimal cutoffs and adjusted parameters were explored in validation data, and the model was further evaluated in test data. A nomogram was established to vividly present the prediction model.The mean age of the participants was 80.4 years (SD 10.3 years), and 50.85% (3416/6718) were female. During a 3-year follow-up, 991 (14.8%) participants were identified with cognitive impairment. Among 45 features, the following four features were finally selected to develop the model: age, instrumental activities of daily living, marital status, and baseline cognitive function. The concordance index of the model constructed by logistic regression was 0.814 (95% CI 0.781-0.846). Older people with normal cognitive functioning having a nomogram score of less than 170 were considered to have a low 3-year risk of cognitive impairment, and those with a score of 170 or greater were considered to have a high 3-year risk of cognitive impairment.This simple and feasible cognitive impairment prediction model could identify community-dwelling elderly people at the greatest 3-year risk for cognitive impairment, which could help community nurses in the early identification of dementia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
陳.发布了新的文献求助10
8秒前
陈的住气完成签到 ,获得积分10
11秒前
12秒前
任性的皮皮虾完成签到,获得积分10
14秒前
21秒前
23秒前
悦耳青梦发布了新的文献求助10
27秒前
Pengfei_Soil发布了新的文献求助10
30秒前
31秒前
37秒前
39秒前
yyds完成签到,获得积分0
40秒前
43秒前
嘻嘻嘻完成签到,获得积分10
43秒前
46秒前
47秒前
2jz发布了新的文献求助10
51秒前
maopf发布了新的文献求助10
56秒前
小蘑菇应助结实的凉面采纳,获得10
58秒前
58秒前
qianyixingchen完成签到 ,获得积分10
1分钟前
SciGPT应助沉默的倔驴采纳,获得10
1分钟前
迅速初柳发布了新的文献求助10
1分钟前
maopf完成签到,获得积分10
1分钟前
c7发布了新的文献求助10
1分钟前
英俊的铭应助迅速初柳采纳,获得10
1分钟前
1分钟前
西蓝花战士完成签到 ,获得积分10
1分钟前
1分钟前
炙热成仁发布了新的文献求助10
1分钟前
NI完成签到 ,获得积分10
1分钟前
1分钟前
赘婿应助悦耳青梦采纳,获得10
1分钟前
科研通AI6.1应助我不吃葱采纳,获得10
1分钟前
科研通AI6.1应助小年小少采纳,获得20
1分钟前
炙热成仁完成签到,获得积分10
1分钟前
希希完成签到 ,获得积分10
1分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746540
求助须知:如何正确求助?哪些是违规求助? 5435517
关于积分的说明 15355531
捐赠科研通 4886528
什么是DOI,文献DOI怎么找? 2627297
邀请新用户注册赠送积分活动 1575762
关于科研通互助平台的介绍 1532510