Exploring Graph Neural Networks for Stock Market Predictions with Rolling Window Analysis

库存(枪支) 股票市场 人工神经网络 计算机科学 金融市场 计量经济学 金融经济学 经济 人工智能 财务 工程类 机械工程 生物 古生物学
作者
Daiki Matsunaga,Toyotaro Suzumura,Toshihiro Takahashi
出处
期刊:Cornell University - arXiv 被引量:46
标识
DOI:10.48550/arxiv.1909.10660
摘要

Recently, there has been a surge of interest in the use of machine learning to help aid in the accurate predictions of financial markets. Despite the exciting advances in this cross-section of finance and AI, many of the current approaches are limited to using technical analysis to capture historical trends of each stock price and thus limited to certain experimental setups to obtain good prediction results. On the other hand, professional investors additionally use their rich knowledge of inter-market and inter-company relations to map the connectivity of companies and events, and use this map to make better market predictions. For instance, they would predict the movement of a certain company's stock price based not only on its former stock price trends but also on the performance of its suppliers or customers, the overall industry, macroeconomic factors and trade policies. This paper investigates the effectiveness of work at the intersection of market predictions and graph neural networks, which hold the potential to mimic the ways in which investors make decisions by incorporating company knowledge graphs directly into the predictive model. The main goal of this work is to test the validity of this approach across different markets and longer time horizons for backtesting using rolling window analysis. In this work, we concentrate on the prediction of individual stock prices in the Japanese Nikkei 225 market over a period of roughly 20 years. For the knowledge graph, we use the Nikkei Value Search data, which is a rich dataset showing mainly supplier relations among Japanese and foreign companies. Our preliminary results show a 29.5% increase and a 2.2-fold increase in the return ratio and Sharpe ratio, respectively, when compared to the market benchmark, as well as a 6.32% increase and 1.3-fold increase, respectively, compared to the baseline LSTM model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笑嘻嘻完成签到,获得积分10
1秒前
丘比特应助小鲤鱼在睡觉采纳,获得10
1秒前
CC完成签到,获得积分10
2秒前
Vanff完成签到,获得积分10
2秒前
疯狂的灵发布了新的文献求助10
2秒前
3秒前
大模型应助wwwstt采纳,获得10
4秒前
4秒前
5秒前
健忘天问完成签到 ,获得积分20
5秒前
6秒前
6秒前
7秒前
舒先生完成签到,获得积分10
7秒前
小鲤鱼在睡觉完成签到,获得积分10
8秒前
风花雪月完成签到 ,获得积分10
8秒前
萧水白发布了新的文献求助100
9秒前
呱呱完成签到,获得积分10
9秒前
阳光下的味道完成签到,获得积分10
10秒前
成就猫咪发布了新的文献求助10
10秒前
黑土完成签到 ,获得积分10
11秒前
戚鹊发布了新的文献求助10
11秒前
12秒前
大个应助minrui采纳,获得10
13秒前
Ava应助神勇冰岚采纳,获得10
14秒前
Leonardi应助研友_24789采纳,获得300
14秒前
16秒前
Rui发布了新的文献求助10
16秒前
17秒前
芋泥波波完成签到,获得积分10
19秒前
20秒前
璇璇璇发布了新的文献求助10
20秒前
在水一方应助疯狂的灵采纳,获得10
20秒前
yy发布了新的文献求助10
21秒前
IZhuangXH发布了新的文献求助20
23秒前
不安海燕发布了新的文献求助10
23秒前
科研通AI2S应助和平港湾采纳,获得10
23秒前
wsf2023发布了新的文献求助10
24秒前
潇洒自由基完成签到 ,获得积分10
24秒前
24秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147903
求助须知:如何正确求助?哪些是违规求助? 2798930
关于积分的说明 7832525
捐赠科研通 2455943
什么是DOI,文献DOI怎么找? 1307025
科研通“疑难数据库(出版商)”最低求助积分说明 627966
版权声明 601587