A combined prediction approach based on wavelet transform for crop water requirement

均方误差 近似误差 自回归模型 数学 粒子群优化 均方根 小波变换 小波 统计 计算机科学 算法 人工智能 工程类 电气工程
作者
Zhongda Tian
出处
期刊:Water Science & Technology: Water Supply [IWA Publishing]
卷期号:20 (3): 1016-1034 被引量:3
标识
DOI:10.2166/ws.2020.024
摘要

Abstract The accurate prediction of crop water requirement is of great significance for the development of regional agriculture. Based on the wavelet transform, a combined prediction approach for crop water requirement is proposed. Firstly, the Mallat wavelet transform algorithm is used to decompose and reconstruct the crop water requirement series. The approximate and detail components of the original series can be obtained. The characteristics of approximate components and detail components are analyzed by Hurst index. Then, according to the different characteristics of the components, the particle swarm optimization algorithm optimized support vector machine is used to predict the approximate component, and the autoregressive moving average model is used to predict the detail components. Three-fold cross-validation is used to improve the generalization ability of the forecasting model. Finally, combined with the prediction value of each prediction model, the final prediction value of crop water requirement is obtained. The crop water requirement data from 1983 to 2018 in Liaoning Province of China are collected as the research object. The simulation results indicate that the proposed combined prediction approach has high prediction accuracy for crop water requirement. The comparison of performance indicators shows that the root mean square error of the proposed prediction approach reduced by 45.40% to 57.16%, mean absolute error reduced by 32.96% to 52.07%, mean absolute percentile error reduced by 33.02% to 52.37%, relative root mean square error reduced by 45.26% to 57.38%, square sum error reduced by 70.18% to 80.42%, and the Theil inequality coefficient reduced by 59.02% to 80.77%. R square increased by 16.46% to 54.77%, and the index of agreement increased by 3.82% to 23.37%. The results of Pearson's test and the DM test show that the association strength between the actual value and the prediction value of the crop water requirement is stronger. Moreover, the proposed prediction approach in this paper has higher reliability under the same confidence level. The effectiveness of the proposed prediction approach for crop water requirement is verified. The proposed prediction approach has great significance for the rational use of water resources, planning and management, promoting social and economic sustainable development.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大龙哥886应助ri_290采纳,获得10
1秒前
sevenhill应助Devastating采纳,获得10
3秒前
3秒前
今后应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
李健应助科研通管家采纳,获得30
4秒前
拼搏应助科研通管家采纳,获得10
4秒前
无花果应助科研通管家采纳,获得20
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
小新应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
鬼切关注了科研通微信公众号
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
无极微光应助科研通管家采纳,获得20
4秒前
scaler完成签到,获得积分10
5秒前
6秒前
xinbowey发布了新的文献求助10
6秒前
xiao完成签到 ,获得积分10
8秒前
9秒前
默默早晨完成签到 ,获得积分10
10秒前
yang发布了新的文献求助10
12秒前
科研通AI6应助Jodie采纳,获得10
14秒前
二次元喵酱完成签到,获得积分10
14秒前
xinbowey完成签到,获得积分10
14秒前
鬼切发布了新的文献求助10
16秒前
搜集达人应助跳跃的翼采纳,获得10
18秒前
19秒前
困困羊完成签到 ,获得积分10
19秒前
LN给LN的求助进行了留言
20秒前
Yixuan_Zou完成签到,获得积分10
21秒前
22秒前
神内小天使完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557746
求助须知:如何正确求助?哪些是违规求助? 4642805
关于积分的说明 14669158
捐赠科研通 4584228
什么是DOI,文献DOI怎么找? 2514701
邀请新用户注册赠送积分活动 1488877
关于科研通互助平台的介绍 1459555