A combined prediction approach based on wavelet transform for crop water requirement

均方误差 近似误差 自回归模型 数学 粒子群优化 均方根 小波变换 小波 统计 计算机科学 算法 人工智能 工程类 电气工程
作者
Zhongda Tian
出处
期刊:Water Science & Technology: Water Supply [IWA Publishing]
卷期号:20 (3): 1016-1034 被引量:3
标识
DOI:10.2166/ws.2020.024
摘要

Abstract The accurate prediction of crop water requirement is of great significance for the development of regional agriculture. Based on the wavelet transform, a combined prediction approach for crop water requirement is proposed. Firstly, the Mallat wavelet transform algorithm is used to decompose and reconstruct the crop water requirement series. The approximate and detail components of the original series can be obtained. The characteristics of approximate components and detail components are analyzed by Hurst index. Then, according to the different characteristics of the components, the particle swarm optimization algorithm optimized support vector machine is used to predict the approximate component, and the autoregressive moving average model is used to predict the detail components. Three-fold cross-validation is used to improve the generalization ability of the forecasting model. Finally, combined with the prediction value of each prediction model, the final prediction value of crop water requirement is obtained. The crop water requirement data from 1983 to 2018 in Liaoning Province of China are collected as the research object. The simulation results indicate that the proposed combined prediction approach has high prediction accuracy for crop water requirement. The comparison of performance indicators shows that the root mean square error of the proposed prediction approach reduced by 45.40% to 57.16%, mean absolute error reduced by 32.96% to 52.07%, mean absolute percentile error reduced by 33.02% to 52.37%, relative root mean square error reduced by 45.26% to 57.38%, square sum error reduced by 70.18% to 80.42%, and the Theil inequality coefficient reduced by 59.02% to 80.77%. R square increased by 16.46% to 54.77%, and the index of agreement increased by 3.82% to 23.37%. The results of Pearson's test and the DM test show that the association strength between the actual value and the prediction value of the crop water requirement is stronger. Moreover, the proposed prediction approach in this paper has higher reliability under the same confidence level. The effectiveness of the proposed prediction approach for crop water requirement is verified. The proposed prediction approach has great significance for the rational use of water resources, planning and management, promoting social and economic sustainable development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助虎虎虎采纳,获得10
刚刚
酷波er应助Aijh采纳,获得10
刚刚
1秒前
rundstedt完成签到 ,获得积分10
1秒前
1秒前
1秒前
Lucas应助活泼的路人采纳,获得10
2秒前
科研通AI5应助lan采纳,获得10
2秒前
2秒前
2秒前
汪了个汪完成签到,获得积分20
2秒前
端庄千青发布了新的文献求助10
2秒前
kiwi完成签到,获得积分10
3秒前
4秒前
完美世界应助嘟嘟采纳,获得10
4秒前
4秒前
SYLH应助活力立诚采纳,获得10
4秒前
英姑应助L柒采纳,获得10
5秒前
nkdss完成签到,获得积分10
5秒前
地瓜儿发布了新的文献求助10
5秒前
wangyu发布了新的文献求助10
5秒前
边城小子发布了新的文献求助10
8秒前
SYLH应助GSirius采纳,获得10
8秒前
Fei1991发布了新的文献求助10
8秒前
领导范儿应助端庄千青采纳,获得10
8秒前
洛苏发布了新的文献求助10
8秒前
苏信怜完成签到,获得积分10
8秒前
Dylan发布了新的文献求助10
9秒前
9秒前
可靠的lld关注了科研通微信公众号
9秒前
10秒前
泪雨煊发布了新的文献求助10
10秒前
10秒前
10秒前
科研通AI5应助汪了个汪采纳,获得10
10秒前
zz完成签到,获得积分10
10秒前
我要读博完成签到,获得积分10
11秒前
DWWWDAADAD发布了新的文献求助30
13秒前
nkdss发布了新的文献求助10
13秒前
14秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3490263
求助须知:如何正确求助?哪些是违规求助? 3077255
关于积分的说明 9148229
捐赠科研通 2769499
什么是DOI,文献DOI怎么找? 1519724
邀请新用户注册赠送积分活动 704238
科研通“疑难数据库(出版商)”最低求助积分说明 702113