进化算法
进化计算
规范化(社会学)
计算机科学
遗传算法
计算
分解
数学优化
算法
人工智能
机器学习
数学
生态学
人类学
生物
社会学
作者
Lie Meng Pang,Hisao Ishibuchi,Ke Shang
标识
DOI:10.1109/ssci44817.2019.9002787
摘要
The multiobjective evolutionary algorithm based on decomposition (MOEA/D) is one of the favorite algorithms in the evolutionary computation community. In this paper, a genetic algorithm is used to automatically tune the parameters for MOEA/D in an offline manner. We consider a version of MOEA/D with a normalization mechanism and two neighborhood structures (for mating and replacement). Our experimental results show that the automatically obtained implementation of MOEA/D outperforms MOEA/D with the default settings in their applications to the DTLZ and WFG test suites. The obtained implementation for each test problem also allows us to discover some potentially good parameter values that can lead to the performance improvement of MOEA/D on certain test problems.
科研通智能强力驱动
Strongly Powered by AbleSci AI