亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Neuro-AI Interface for Evaluating Generative Adversarial Networks

计算机科学 公制(单位) 卷积神经网络 接口(物质) 人工智能 人工神经网络 秩(图论) 机器学习 样品(材料) 图像(数学) 质量(理念) 过程(计算) 生成语法 模式识别(心理学) 哲学 数学 气泡 色谱法 组合数学 运营管理 化学 认识论 最大气泡压力法 并行计算 经济 操作系统
作者
Zhengwei Wang,Qi She,Alan F. Smeaton,Tomás E. Ward,Graham Healy
出处
期刊:Cornell University - arXiv 被引量:2
标识
DOI:10.48550/arxiv.2003.03193
摘要

Generative adversarial networks (GANs) are increasingly attracting attention in the computer vision, natural language processing, speech synthesis and similar domains. However, evaluating the performance of GANs is still an open and challenging problem. Existing evaluation metrics primarily measure the dissimilarity between real and generated images using automated statistical methods. They often require large sample sizes for evaluation and do not directly reflect human perception of image quality. In this work, we introduce an evaluation metric called Neuroscore, for evaluating the performance of GANs, that more directly reflects psychoperceptual image quality through the utilization of brain signals. Our results show that Neuroscore has superior performance to the current evaluation metrics in that: (1) It is more consistent with human judgment; (2) The evaluation process needs much smaller numbers of samples; and (3) It is able to rank the quality of images on a per GAN basis. A convolutional neural network (CNN) based neuro-AI interface is proposed to predict Neuroscore from GAN-generated images directly without the need for neural responses. Importantly, we show that including neural responses during the training phase of the network can significantly improve the prediction capability of the proposed model. Codes and data can be referred at this link: https://github.com/villawang/Neuro-AI-Interface.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助wdsgkfjhn采纳,获得10
1秒前
飞天大南瓜完成签到,获得积分10
15秒前
终归完成签到 ,获得积分10
20秒前
20秒前
MchemG应助科研通管家采纳,获得20
27秒前
MchemG应助科研通管家采纳,获得20
27秒前
Criminology34应助科研通管家采纳,获得10
27秒前
辉辉应助科研通管家采纳,获得10
27秒前
33秒前
35秒前
Epiphany发布了新的文献求助10
39秒前
13633501455完成签到 ,获得积分10
48秒前
57秒前
犬来八荒发布了新的文献求助10
1分钟前
1分钟前
Epiphany完成签到,获得积分10
1分钟前
1分钟前
上官若男应助温婉的凝雁采纳,获得10
1分钟前
Alvin完成签到 ,获得积分10
1分钟前
温婉的凝雁完成签到,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
王玉发布了新的文献求助10
2分钟前
2分钟前
2分钟前
Cherry发布了新的文献求助10
2分钟前
2分钟前
昌莆完成签到 ,获得积分10
2分钟前
3分钟前
冉亦完成签到,获得积分10
3分钟前
搜集达人应助null采纳,获得10
3分钟前
可爱的函函应助香菜肉丸采纳,获得10
3分钟前
3分钟前
平淡映秋发布了新的文献求助10
3分钟前
focus完成签到 ,获得积分10
3分钟前
香菜肉丸发布了新的文献求助10
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5617095
求助须知:如何正确求助?哪些是违规求助? 4701461
关于积分的说明 14913699
捐赠科研通 4749054
什么是DOI,文献DOI怎么找? 2549285
邀请新用户注册赠送积分活动 1512345
关于科研通互助平台的介绍 1474091