A Neuro-AI Interface for Evaluating Generative Adversarial Networks

计算机科学 公制(单位) 卷积神经网络 接口(物质) 人工智能 人工神经网络 秩(图论) 机器学习 样品(材料) 图像(数学) 质量(理念) 过程(计算) 生成语法 模式识别(心理学) 哲学 数学 气泡 色谱法 组合数学 运营管理 化学 认识论 最大气泡压力法 并行计算 经济 操作系统
作者
Zhengwei Wang,Qi She,Alan F. Smeaton,Tomás E. Ward,Graham Healy
出处
期刊:Cornell University - arXiv 被引量:2
标识
DOI:10.48550/arxiv.2003.03193
摘要

Generative adversarial networks (GANs) are increasingly attracting attention in the computer vision, natural language processing, speech synthesis and similar domains. However, evaluating the performance of GANs is still an open and challenging problem. Existing evaluation metrics primarily measure the dissimilarity between real and generated images using automated statistical methods. They often require large sample sizes for evaluation and do not directly reflect human perception of image quality. In this work, we introduce an evaluation metric called Neuroscore, for evaluating the performance of GANs, that more directly reflects psychoperceptual image quality through the utilization of brain signals. Our results show that Neuroscore has superior performance to the current evaluation metrics in that: (1) It is more consistent with human judgment; (2) The evaluation process needs much smaller numbers of samples; and (3) It is able to rank the quality of images on a per GAN basis. A convolutional neural network (CNN) based neuro-AI interface is proposed to predict Neuroscore from GAN-generated images directly without the need for neural responses. Importantly, we show that including neural responses during the training phase of the network can significantly improve the prediction capability of the proposed model. Codes and data can be referred at this link: https://github.com/villawang/Neuro-AI-Interface.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
紫气东来发布了新的文献求助10
1秒前
没有神的过往完成签到,获得积分10
2秒前
ZHANG6545完成签到,获得积分10
3秒前
渔落完成签到,获得积分10
3秒前
3秒前
张鱼小丸子完成签到,获得积分10
3秒前
Wen发布了新的文献求助10
4秒前
害羞向日葵完成签到 ,获得积分10
4秒前
VDC应助惜筠采纳,获得30
4秒前
Always62442发布了新的文献求助10
4秒前
multi发布了新的文献求助10
5秒前
完美世界应助kook采纳,获得10
5秒前
好样的完成签到,获得积分10
5秒前
6秒前
7秒前
xiaofu完成签到,获得积分10
9秒前
km完成签到,获得积分10
9秒前
myt发布了新的文献求助30
9秒前
无极微光应助十米采纳,获得20
9秒前
9秒前
CodeCraft应助小飞鼠采纳,获得10
9秒前
10秒前
盛夏如花发布了新的文献求助10
10秒前
10秒前
455发布了新的文献求助10
10秒前
dragon完成签到 ,获得积分10
10秒前
斯文败类应助烂漫耳机采纳,获得10
11秒前
渔落发布了新的文献求助10
11秒前
阳光水绿完成签到,获得积分10
11秒前
12秒前
我是狗发布了新的文献求助10
12秒前
黑白菜完成签到,获得积分10
12秒前
13秒前
Always62442完成签到,获得积分10
13秒前
凌L发布了新的文献求助10
13秒前
GH发布了新的文献求助10
13秒前
桐桐应助11采纳,获得40
13秒前
研友_nqvkOZ完成签到,获得积分10
14秒前
12138完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836