A deep neural network for estimating the bladder boundary using electrical impedance tomography

电阻抗断层成像 边界(拓扑) 成像体模 趋同(经济学) 反问题 人工神经网络 算法 数学 计算机科学 断层摄影术 人工智能 数学分析 医学 放射科 经济增长 经济
作者
Sravan Kumar Konki,Anil Kumar Khambampati,Sunam Kumar Sharma,Kyung Youn Kim
出处
期刊:Physiological Measurement [IOP Publishing]
卷期号:41 (11): 115003-115003 被引量:6
标识
DOI:10.1088/1361-6579/abaa56
摘要

Accurate bladder size estimation is an important clinical parameter that assists physicians, enabling them to provide better treatment for patients who are suffering from urinary incontinence. Electrical impedance tomography (EIT) is a non-invasive medical imaging method that estimates organ boundaries assuming that the electrical conductivity values of the background, bladder, and adjacent tissues inside the pelvic domain are known a priori. However, the performance of a traditional EIT inverse algorithm such as the modified Newton-Raphson (mNR) for shape estimation exhibits severe convergence problems as it heavily depends on the initial guess and often fails to estimate complex boundaries that require greater numbers of Fourier coefficients to approximate the boundary shape. Therefore, in this study a deep neural network (DNN) is introduced to estimate the urinary bladder boundary inside the pelvic domain.We designed a five-layer DNN which was trained with a dataset of 15 subjects that had different pelvic boundaries, bladder shapes, and conductivity. The boundary voltage measurements of the pelvic domain are defined as input and the corresponding Fourier coefficients that describe the bladder boundary as output data. To evaluate the DNN, we tested with three different sizes of urinary bladder.Numerical simulations and phantom experiments were performed to validate the performance of the proposed DNN model. The proposed DNN algorithm is compared with the radial basis function (RBF) and mNR method for bladder shape estimation. The results show that the DNN has a low root mean square error for estimated boundary coefficients and better estimation of bladder size when compared to the mNR and RBF.We apply the first DNN algorithm to estimate the complex boundaries such as the urinary bladder using EIT. Our work provides a novel efficient EIT inverse solver to estimate the bladder boundary and size accurately. The proposed DNN algorithm has advantages in that it is simple to implement, and has better accuracy and fast estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到 ,获得积分10
1秒前
寒月如雪发布了新的文献求助10
2秒前
3秒前
jhw完成签到 ,获得积分10
3秒前
3秒前
飞飞deii应助飘逸的问晴采纳,获得10
4秒前
研友_nqa7On完成签到,获得积分10
5秒前
激动的半梦完成签到,获得积分20
5秒前
魏蒙发布了新的文献求助10
5秒前
苯二氮卓发布了新的文献求助10
7秒前
冷酷莫言完成签到,获得积分10
8秒前
8秒前
11秒前
11秒前
rorolu完成签到 ,获得积分10
11秒前
11秒前
12秒前
yesir完成签到,获得积分10
14秒前
小葵ty完成签到,获得积分10
14秒前
rorolu关注了科研通微信公众号
15秒前
ira发布了新的文献求助10
15秒前
萤火发布了新的文献求助10
15秒前
Nancy发布了新的文献求助10
16秒前
小葵ty发布了新的文献求助10
17秒前
17秒前
yyyxxx发布了新的文献求助10
18秒前
18秒前
18秒前
20秒前
23秒前
快乐小蜜蜂应助嘻嘻哈哈采纳,获得10
23秒前
24秒前
25秒前
26秒前
27秒前
英姑应助zorro3574采纳,获得10
29秒前
懵懂的远锋完成签到,获得积分10
30秒前
huier发布了新的文献求助20
30秒前
彭于晏应助Cosima采纳,获得10
30秒前
害羞的裘发布了新的文献求助10
30秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260879
求助须知:如何正确求助?哪些是违规求助? 2901937
关于积分的说明 8318293
捐赠科研通 2571697
什么是DOI,文献DOI怎么找? 1397202
科研通“疑难数据库(出版商)”最低求助积分说明 653684
邀请新用户注册赠送积分活动 632213