A deep neural network for estimating the bladder boundary using electrical impedance tomography

电阻抗断层成像 边界(拓扑) 成像体模 趋同(经济学) 反问题 人工神经网络 算法 数学 计算机科学 断层摄影术 人工智能 数学分析 医学 放射科 经济增长 经济
作者
Sravan Kumar Konki,Anil Kumar Khambampati,Sunam Kumar Sharma,Kyung Youn Kim
出处
期刊:Physiological Measurement [IOP Publishing]
卷期号:41 (11): 115003-115003 被引量:6
标识
DOI:10.1088/1361-6579/abaa56
摘要

Accurate bladder size estimation is an important clinical parameter that assists physicians, enabling them to provide better treatment for patients who are suffering from urinary incontinence. Electrical impedance tomography (EIT) is a non-invasive medical imaging method that estimates organ boundaries assuming that the electrical conductivity values of the background, bladder, and adjacent tissues inside the pelvic domain are known a priori. However, the performance of a traditional EIT inverse algorithm such as the modified Newton-Raphson (mNR) for shape estimation exhibits severe convergence problems as it heavily depends on the initial guess and often fails to estimate complex boundaries that require greater numbers of Fourier coefficients to approximate the boundary shape. Therefore, in this study a deep neural network (DNN) is introduced to estimate the urinary bladder boundary inside the pelvic domain.We designed a five-layer DNN which was trained with a dataset of 15 subjects that had different pelvic boundaries, bladder shapes, and conductivity. The boundary voltage measurements of the pelvic domain are defined as input and the corresponding Fourier coefficients that describe the bladder boundary as output data. To evaluate the DNN, we tested with three different sizes of urinary bladder.Numerical simulations and phantom experiments were performed to validate the performance of the proposed DNN model. The proposed DNN algorithm is compared with the radial basis function (RBF) and mNR method for bladder shape estimation. The results show that the DNN has a low root mean square error for estimated boundary coefficients and better estimation of bladder size when compared to the mNR and RBF.We apply the first DNN algorithm to estimate the complex boundaries such as the urinary bladder using EIT. Our work provides a novel efficient EIT inverse solver to estimate the bladder boundary and size accurately. The proposed DNN algorithm has advantages in that it is simple to implement, and has better accuracy and fast estimation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
想啥呢哦哦完成签到,获得积分10
刚刚
开朗的雁发布了新的文献求助10
刚刚
GRX1110发布了新的文献求助10
刚刚
1秒前
科研牛马人完成签到,获得积分10
2秒前
科研通AI6.1应助一线西风采纳,获得10
3秒前
玉米发布了新的文献求助10
3秒前
aaaaa发布了新的文献求助10
4秒前
4秒前
打打应助summer采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
爆米花应助TT采纳,获得10
7秒前
7秒前
11秒前
SUE完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
CodeCraft应助luxi0714采纳,获得10
12秒前
12秒前
Superxx发布了新的文献求助10
12秒前
14秒前
15秒前
15秒前
火星上的沛春完成签到,获得积分10
16秒前
李健发布了新的文献求助10
16秒前
852应助小灰灰采纳,获得10
16秒前
17秒前
18秒前
所所应助大胆的向松采纳,获得10
19秒前
19秒前
kang发布了新的文献求助10
20秒前
20秒前
青椒黑蒜发布了新的文献求助10
21秒前
21秒前
21秒前
Superxx完成签到,获得积分10
22秒前
Edison完成签到,获得积分10
22秒前
24秒前
念安发布了新的文献求助10
24秒前
orixero应助怕孤独的问芙采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5761461
求助须知:如何正确求助?哪些是违规求助? 5529957
关于积分的说明 15399736
捐赠科研通 4897879
什么是DOI,文献DOI怎么找? 2634552
邀请新用户注册赠送积分活动 1582678
关于科研通互助平台的介绍 1537927