清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A deep neural network for estimating the bladder boundary using electrical impedance tomography

电阻抗断层成像 边界(拓扑) 成像体模 趋同(经济学) 反问题 人工神经网络 算法 数学 计算机科学 断层摄影术 人工智能 数学分析 医学 放射科 经济增长 经济
作者
Sravan Kumar Konki,Anil Kumar Khambampati,Sunam Kumar Sharma,Kyung Youn Kim
出处
期刊:Physiological Measurement [IOP Publishing]
卷期号:41 (11): 115003-115003 被引量:6
标识
DOI:10.1088/1361-6579/abaa56
摘要

Accurate bladder size estimation is an important clinical parameter that assists physicians, enabling them to provide better treatment for patients who are suffering from urinary incontinence. Electrical impedance tomography (EIT) is a non-invasive medical imaging method that estimates organ boundaries assuming that the electrical conductivity values of the background, bladder, and adjacent tissues inside the pelvic domain are known a priori. However, the performance of a traditional EIT inverse algorithm such as the modified Newton-Raphson (mNR) for shape estimation exhibits severe convergence problems as it heavily depends on the initial guess and often fails to estimate complex boundaries that require greater numbers of Fourier coefficients to approximate the boundary shape. Therefore, in this study a deep neural network (DNN) is introduced to estimate the urinary bladder boundary inside the pelvic domain.We designed a five-layer DNN which was trained with a dataset of 15 subjects that had different pelvic boundaries, bladder shapes, and conductivity. The boundary voltage measurements of the pelvic domain are defined as input and the corresponding Fourier coefficients that describe the bladder boundary as output data. To evaluate the DNN, we tested with three different sizes of urinary bladder.Numerical simulations and phantom experiments were performed to validate the performance of the proposed DNN model. The proposed DNN algorithm is compared with the radial basis function (RBF) and mNR method for bladder shape estimation. The results show that the DNN has a low root mean square error for estimated boundary coefficients and better estimation of bladder size when compared to the mNR and RBF.We apply the first DNN algorithm to estimate the complex boundaries such as the urinary bladder using EIT. Our work provides a novel efficient EIT inverse solver to estimate the bladder boundary and size accurately. The proposed DNN algorithm has advantages in that it is simple to implement, and has better accuracy and fast estimation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
9秒前
zzmm发布了新的文献求助10
14秒前
21秒前
ch完成签到 ,获得积分10
28秒前
49秒前
完美世界应助科研通管家采纳,获得10
51秒前
科研通AI2S应助科研通管家采纳,获得10
51秒前
夏天的蜜雪冰城完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
SciGPT应助眯眯眼的山柳采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
小小虾完成签到 ,获得积分10
2分钟前
3分钟前
丘比特应助李小猫采纳,获得10
3分钟前
雨rain完成签到 ,获得积分10
3分钟前
3分钟前
李小猫发布了新的文献求助10
3分钟前
3分钟前
乐乐应助另一种蓝色采纳,获得10
3分钟前
thl发布了新的文献求助10
3分钟前
4分钟前
切尔顿发布了新的文献求助10
4分钟前
泽锦臻完成签到,获得积分10
4分钟前
4分钟前
4分钟前
拾玖发布了新的文献求助10
4分钟前
zzmm发布了新的文献求助10
4分钟前
4分钟前
4分钟前
5分钟前
小盼虫发布了新的文献求助10
5分钟前
5分钟前
5分钟前
小蘑菇应助眯眯眼的山柳采纳,获得10
5分钟前
丘比特应助另一种蓝色采纳,获得10
5分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5747039
求助须知:如何正确求助?哪些是违规求助? 5441746
关于积分的说明 15356150
捐赠科研通 4887004
什么是DOI,文献DOI怎么找? 2627560
邀请新用户注册赠送积分活动 1575975
关于科研通互助平台的介绍 1532815