A deep neural network for estimating the bladder boundary using electrical impedance tomography

电阻抗断层成像 边界(拓扑) 成像体模 趋同(经济学) 反问题 人工神经网络 算法 数学 计算机科学 断层摄影术 人工智能 数学分析 医学 放射科 经济增长 经济
作者
Sravan Kumar Konki,Anil Kumar Khambampati,Sunam Kumar Sharma,Kyung Youn Kim
出处
期刊:Physiological Measurement [IOP Publishing]
卷期号:41 (11): 115003-115003 被引量:6
标识
DOI:10.1088/1361-6579/abaa56
摘要

Accurate bladder size estimation is an important clinical parameter that assists physicians, enabling them to provide better treatment for patients who are suffering from urinary incontinence. Electrical impedance tomography (EIT) is a non-invasive medical imaging method that estimates organ boundaries assuming that the electrical conductivity values of the background, bladder, and adjacent tissues inside the pelvic domain are known a priori. However, the performance of a traditional EIT inverse algorithm such as the modified Newton-Raphson (mNR) for shape estimation exhibits severe convergence problems as it heavily depends on the initial guess and often fails to estimate complex boundaries that require greater numbers of Fourier coefficients to approximate the boundary shape. Therefore, in this study a deep neural network (DNN) is introduced to estimate the urinary bladder boundary inside the pelvic domain.We designed a five-layer DNN which was trained with a dataset of 15 subjects that had different pelvic boundaries, bladder shapes, and conductivity. The boundary voltage measurements of the pelvic domain are defined as input and the corresponding Fourier coefficients that describe the bladder boundary as output data. To evaluate the DNN, we tested with three different sizes of urinary bladder.Numerical simulations and phantom experiments were performed to validate the performance of the proposed DNN model. The proposed DNN algorithm is compared with the radial basis function (RBF) and mNR method for bladder shape estimation. The results show that the DNN has a low root mean square error for estimated boundary coefficients and better estimation of bladder size when compared to the mNR and RBF.We apply the first DNN algorithm to estimate the complex boundaries such as the urinary bladder using EIT. Our work provides a novel efficient EIT inverse solver to estimate the bladder boundary and size accurately. The proposed DNN algorithm has advantages in that it is simple to implement, and has better accuracy and fast estimation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助一个小胖子采纳,获得10
刚刚
石人发布了新的文献求助10
1秒前
1秒前
文耳东发布了新的文献求助10
1秒前
1秒前
pdds发布了新的文献求助10
2秒前
冷酷芝完成签到,获得积分10
2秒前
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
不过尔尔发布了新的文献求助10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
打打应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
mufeixue完成签到,获得积分10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
6秒前
简单的乐驹应助科研通管家采纳,获得150
6秒前
6秒前
6秒前
传奇3应助科研通管家采纳,获得30
6秒前
bai发布了新的文献求助10
6秒前
Return应助科研通管家采纳,获得10
6秒前
Qingyong21应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
8秒前
李白完成签到,获得积分10
10秒前
风吹阔叶发布了新的文献求助30
10秒前
10秒前
11秒前
qing发布了新的文献求助30
11秒前
隐形小鸽子完成签到,获得积分20
11秒前
11秒前
文艺的青旋完成签到 ,获得积分10
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049