A deep neural network for estimating the bladder boundary using electrical impedance tomography

电阻抗断层成像 边界(拓扑) 成像体模 趋同(经济学) 反问题 人工神经网络 算法 数学 计算机科学 断层摄影术 人工智能 数学分析 医学 放射科 经济增长 经济
作者
Sravan Kumar Konki,Anil Kumar Khambampati,Sunam Kumar Sharma,Kyung Youn Kim
出处
期刊:Physiological Measurement [IOP Publishing]
卷期号:41 (11): 115003-115003 被引量:6
标识
DOI:10.1088/1361-6579/abaa56
摘要

Accurate bladder size estimation is an important clinical parameter that assists physicians, enabling them to provide better treatment for patients who are suffering from urinary incontinence. Electrical impedance tomography (EIT) is a non-invasive medical imaging method that estimates organ boundaries assuming that the electrical conductivity values of the background, bladder, and adjacent tissues inside the pelvic domain are known a priori. However, the performance of a traditional EIT inverse algorithm such as the modified Newton-Raphson (mNR) for shape estimation exhibits severe convergence problems as it heavily depends on the initial guess and often fails to estimate complex boundaries that require greater numbers of Fourier coefficients to approximate the boundary shape. Therefore, in this study a deep neural network (DNN) is introduced to estimate the urinary bladder boundary inside the pelvic domain.We designed a five-layer DNN which was trained with a dataset of 15 subjects that had different pelvic boundaries, bladder shapes, and conductivity. The boundary voltage measurements of the pelvic domain are defined as input and the corresponding Fourier coefficients that describe the bladder boundary as output data. To evaluate the DNN, we tested with three different sizes of urinary bladder.Numerical simulations and phantom experiments were performed to validate the performance of the proposed DNN model. The proposed DNN algorithm is compared with the radial basis function (RBF) and mNR method for bladder shape estimation. The results show that the DNN has a low root mean square error for estimated boundary coefficients and better estimation of bladder size when compared to the mNR and RBF.We apply the first DNN algorithm to estimate the complex boundaries such as the urinary bladder using EIT. Our work provides a novel efficient EIT inverse solver to estimate the bladder boundary and size accurately. The proposed DNN algorithm has advantages in that it is simple to implement, and has better accuracy and fast estimation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小格爱科研完成签到,获得积分10
刚刚
gy发布了新的文献求助10
2秒前
绝世大魔王完成签到 ,获得积分10
2秒前
怡然可乐发布了新的文献求助10
3秒前
fffxj完成签到,获得积分10
3秒前
852应助泡泡茶壶采纳,获得10
3秒前
没头脑和不高兴完成签到,获得积分10
4秒前
ChenXuan完成签到,获得积分10
5秒前
坐标完成签到,获得积分10
5秒前
6秒前
科研通AI6应助cls采纳,获得10
6秒前
包子完成签到,获得积分10
7秒前
陈永伟完成签到,获得积分10
7秒前
sasa完成签到,获得积分10
7秒前
8秒前
8秒前
junyang发布了新的文献求助10
10秒前
10秒前
exy发布了新的文献求助10
11秒前
泽松应助gy采纳,获得10
11秒前
cc应助gy采纳,获得10
11秒前
羽卿发布了新的文献求助10
11秒前
25号底片发布了新的文献求助10
12秒前
12秒前
韩恩轩完成签到,获得积分10
14秒前
fengzi151完成签到,获得积分10
15秒前
Muyush完成签到,获得积分10
15秒前
MYMELODY完成签到,获得积分10
16秒前
科研通AI6.1应助畅快芝麻采纳,获得10
16秒前
帅玉玉发布了新的文献求助10
16秒前
luraaaa完成签到,获得积分10
16秒前
orixero应助ZHOU采纳,获得10
17秒前
夜晚有星发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
zhangxinan完成签到,获得积分10
19秒前
ericlyz完成签到 ,获得积分10
19秒前
19秒前
顺利的绿柏完成签到,获得积分10
19秒前
哎咿呀哎呀完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5733454
求助须知:如何正确求助?哪些是违规求助? 5349067
关于积分的说明 15324172
捐赠科研通 4878567
什么是DOI,文献DOI怎么找? 2621289
邀请新用户注册赠送积分活动 1570406
关于科研通互助平台的介绍 1527330